Grading of Cerebral Glioma with Multiparametric MR Imaging and 18F-FDG-PET: Concordance and Accuracy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Jeong Hee Yoon, Ji-hoon Kim, Won Jun Kang, Chul-Ho Sohn, Seung Hong Choi, Tae Jin Yun, Yong Eun, Yong Sub Song, Kee-Hyun Chang

ABSTRACT

OBJECTIVES: To retrospectively evaluate concordance rates and predictive values in concordant cases among multiparametric MR techniques and FDG-PET to grade cerebral gliomas. METHODS: Multiparametric MR imaging and FDG-PET were performed in 60 consecutive patients with cerebral gliomas (12 low-grade and 48 high-grade gliomas). As the dichotomic variables, conventional MRI, minimum apparent diffusion coefficient in diffusion-weighted imaging, maximum relative cerebral blood volume ratio in perfusion-weighted imaging, choline/creatine ratio and (lipid and lactate)/creatine ratio in MR spectroscopy, and maximum standardised uptake value ratio in FDG-PET in low- and high-grade gliomas were compared. Their concordance rates and positive/negative predictive values (PPV/NPV) in concordant cases were obtained for the various combinations of multiparametric MR techniques and FDG-PET. RESULTS: There were significant differences between low- and high-grade gliomas in all techniques. Combinations of two, three, four, and five out of the five techniques showed concordance rates of 77.0 ± 4.8%, 65.5 ± 4.0%, 58.3 ± 2.6% and 53.3%, PPV in high-grade concordant cases of 97.3 ± 1.7%, 99.1 ± 1.4%, 100.0 ± 0% and 100.0% and NPV in low-grade concordant cases of 70.2 ± 7.5%, 78.0 ± 6.0%, 80.3 ± 3.4% and 80.0%, respectively. CONCLUSION: Multiparametric MR techniques and FDG-PET have a concordant tendency in a two-tiered classification for the grading of cerebral glioma. If at least two examinations concordantly indicated high-grade gliomas, the PPV was about 95%. KEY POINTS: • Modern imaging techniques can help predict the aggressiveness of cerebral gliomas. • Multiparametric MRI and FDG-PET have a concordant tendency to grade cerebral gliomas. • Their high-grade concordant cases revealed at least 95 % positive predictive values. • Their low-grade concordant cases revealed about 70–80% negative predictive values. More... »

PAGES

380-389

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-013-3019-3

DOI

http://dx.doi.org/10.1007/s00330-013-3019-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053279158

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24078054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Jeong Hee", 
        "id": "sg:person.01020423064.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020423064.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Ji-hoon", 
        "id": "sg:person.014620401064.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014620401064.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea", 
            "Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Won Jun", 
        "id": "sg:person.01077644577.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077644577.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "Chul-Ho", 
        "id": "sg:person.01022612523.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022612523.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Seung Hong", 
        "id": "sg:person.01346514703.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346514703.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yun", 
        "givenName": "Tae Jin", 
        "id": "sg:person.01324123377.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324123377.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "College of Medicine, Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eun", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Yong Sub", 
        "id": "sg:person.01045234676.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045234676.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soonchunhyang University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412678.e", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
            "Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Kee-Hyun", 
        "id": "sg:person.01054225146.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054225146.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3174/ajnr.a1121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005047027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jocn.2009.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017630894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a1989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018316158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2011.01.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018343337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019050944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a0851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022186611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-007-0253-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026073221", 
          "https://doi.org/10.1007/s00234-007-0253-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-007-0253-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026073221", 
          "https://doi.org/10.1007/s00234-007-0253-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-006-0102-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027434611", 
          "https://doi.org/10.1007/s00234-006-0102-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1552-6569.2010.00561.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031090057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2243011014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033651036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006431120031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034732877", 
          "https://doi.org/10.1023/a:1006431120031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1288-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037480893", 
          "https://doi.org/10.1007/s00330-008-1288-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1288-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037480893", 
          "https://doi.org/10.1007/s00330-008-1288-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-013-1145-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038185533", 
          "https://doi.org/10.1007/s00234-013-1145-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a0842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041221372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-001-0690-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041684840", 
          "https://doi.org/10.1007/s00259-001-0690-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043235800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-002-0816-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045212225", 
          "https://doi.org/10.1007/s00234-002-0816-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00598951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052252182", 
          "https://doi.org/10.1007/bf00598951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00598951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052252182", 
          "https://doi.org/10.1007/bf00598951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.171.6.9843274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069322045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/jkrs.1994.31.3.377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071152600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074629865", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075239043", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076599380", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076797095", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077206466", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077283454", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.174.2.2153310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078390364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2011.100510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078458213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2011.100510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078458213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.195.1.7892494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082553742"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "OBJECTIVES: To retrospectively evaluate concordance rates and predictive values in concordant cases among multiparametric MR techniques and FDG-PET to grade cerebral gliomas.\nMETHODS: Multiparametric MR imaging and FDG-PET were performed in 60 consecutive patients with cerebral gliomas (12 low-grade and 48 high-grade gliomas). As the dichotomic variables, conventional MRI, minimum apparent diffusion coefficient in diffusion-weighted imaging, maximum relative cerebral blood volume ratio in perfusion-weighted imaging, choline/creatine ratio and (lipid and lactate)/creatine ratio in MR spectroscopy, and maximum standardised uptake value ratio in FDG-PET in low- and high-grade gliomas were compared. Their concordance rates and positive/negative predictive values (PPV/NPV) in concordant cases were obtained for the various combinations of multiparametric MR techniques and FDG-PET.\nRESULTS: There were significant differences between low- and high-grade gliomas in all techniques. Combinations of two, three, four, and five out of the five techniques showed concordance rates of 77.0\u2009\u00b1\u20094.8%, 65.5\u2009\u00b1\u20094.0%, 58.3\u2009\u00b1\u20092.6% and 53.3%, PPV in high-grade concordant cases of 97.3\u2009\u00b1\u20091.7%, 99.1\u2009\u00b1\u20091.4%, 100.0\u2009\u00b1\u20090% and 100.0% and NPV in low-grade concordant cases of 70.2\u2009\u00b1\u20097.5%, 78.0\u2009\u00b1\u20096.0%, 80.3\u2009\u00b1\u20093.4% and 80.0%, respectively.\nCONCLUSION: Multiparametric MR techniques and FDG-PET have a concordant tendency in a two-tiered classification for the grading of cerebral glioma. If at least two examinations concordantly indicated high-grade gliomas, the PPV was about 95%.\nKEY POINTS: \u2022 Modern imaging techniques can help predict the aggressiveness of cerebral gliomas. \u2022 Multiparametric MRI and FDG-PET have a concordant tendency to grade cerebral gliomas. \u2022 Their high-grade concordant cases revealed at least 95 % positive predictive values. \u2022 Their low-grade concordant cases revealed about 70\u201380% negative predictive values.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-013-3019-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Grading of Cerebral Glioma with Multiparametric MR Imaging and 18F-FDG-PET: Concordance and Accuracy", 
    "pagination": "380-389", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fdc7bb5d1e5f6af9bbcee142db076cbd5f671a40b025e91eedc5581ef254747b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24078054"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-013-3019-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053279158"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-013-3019-3", 
      "https://app.dimensions.ai/details/publication/pub.1053279158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-013-3019-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-3019-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-3019-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-3019-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-3019-3'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      75 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-013-3019-3 schema:about N0ab6f872f25d41458a6ebf39d114ebac
2 N2ca37a0e4d77482390b943611381097a
3 N31328a16b4b4434b8aaa8d6355cc93a0
4 N43efeefd22e947e9b71cea81d60f9021
5 N55382967ec5246e1864837996ea02bae
6 N5e52e4e0358c4bb1b562e36561fd84d4
7 N683f4f376c9446ba91a9818908680392
8 N716c6de8337542809fee5b019f93155b
9 N7ef4b9b9a82c4efd8dd590c0695911ac
10 Na0fe16ca140e4f20b10ddd5876415365
11 Nabd6141c48c64d66b5c152d2c9f204f5
12 Nb5df38e128bb47a58dd411ce8554cfcf
13 Nbd0bead8565f41b8a5885337cf3f4697
14 Nca81152594f045d7be33ff4dbc5f31dd
15 Ndf7829020e01424ebbf9d9e02970600c
16 Nf054202919974533adcce839c3a71eb4
17 Nf56e8cd567e844cf883eb8f6c836b57d
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author Nba81b294cccd42fba51c08fc1fb95e77
21 schema:citation sg:pub.10.1007/bf00598951
22 sg:pub.10.1007/s00234-002-0816-9
23 sg:pub.10.1007/s00234-006-0102-3
24 sg:pub.10.1007/s00234-007-0253-x
25 sg:pub.10.1007/s00234-013-1145-x
26 sg:pub.10.1007/s00259-001-0690-4
27 sg:pub.10.1007/s00330-008-1288-z
28 sg:pub.10.1023/a:1006431120031
29 https://app.dimensions.ai/details/publication/pub.1074629865
30 https://app.dimensions.ai/details/publication/pub.1075239043
31 https://app.dimensions.ai/details/publication/pub.1076599380
32 https://app.dimensions.ai/details/publication/pub.1076797095
33 https://app.dimensions.ai/details/publication/pub.1077206466
34 https://app.dimensions.ai/details/publication/pub.1077283454
35 https://doi.org/10.1016/j.ejrad.2011.01.080
36 https://doi.org/10.1016/j.jocn.2009.02.035
37 https://doi.org/10.1111/j.1552-6569.2010.00561.x
38 https://doi.org/10.1148/radiol.11110686
39 https://doi.org/10.1148/radiol.2243011014
40 https://doi.org/10.1148/radiology.174.2.2153310
41 https://doi.org/10.1148/radiology.195.1.7892494
42 https://doi.org/10.1258/ar.2011.100510
43 https://doi.org/10.2214/ajr.171.6.9843274
44 https://doi.org/10.3174/ajnr.a0842
45 https://doi.org/10.3174/ajnr.a0851
46 https://doi.org/10.3174/ajnr.a1121
47 https://doi.org/10.3174/ajnr.a1989
48 https://doi.org/10.3174/ajnr.a2846
49 https://doi.org/10.3348/jkrs.1994.31.3.377
50 schema:datePublished 2014-02
51 schema:datePublishedReg 2014-02-01
52 schema:description OBJECTIVES: To retrospectively evaluate concordance rates and predictive values in concordant cases among multiparametric MR techniques and FDG-PET to grade cerebral gliomas. METHODS: Multiparametric MR imaging and FDG-PET were performed in 60 consecutive patients with cerebral gliomas (12 low-grade and 48 high-grade gliomas). As the dichotomic variables, conventional MRI, minimum apparent diffusion coefficient in diffusion-weighted imaging, maximum relative cerebral blood volume ratio in perfusion-weighted imaging, choline/creatine ratio and (lipid and lactate)/creatine ratio in MR spectroscopy, and maximum standardised uptake value ratio in FDG-PET in low- and high-grade gliomas were compared. Their concordance rates and positive/negative predictive values (PPV/NPV) in concordant cases were obtained for the various combinations of multiparametric MR techniques and FDG-PET. RESULTS: There were significant differences between low- and high-grade gliomas in all techniques. Combinations of two, three, four, and five out of the five techniques showed concordance rates of 77.0 ± 4.8%, 65.5 ± 4.0%, 58.3 ± 2.6% and 53.3%, PPV in high-grade concordant cases of 97.3 ± 1.7%, 99.1 ± 1.4%, 100.0 ± 0% and 100.0% and NPV in low-grade concordant cases of 70.2 ± 7.5%, 78.0 ± 6.0%, 80.3 ± 3.4% and 80.0%, respectively. CONCLUSION: Multiparametric MR techniques and FDG-PET have a concordant tendency in a two-tiered classification for the grading of cerebral glioma. If at least two examinations concordantly indicated high-grade gliomas, the PPV was about 95%. KEY POINTS: • Modern imaging techniques can help predict the aggressiveness of cerebral gliomas. • Multiparametric MRI and FDG-PET have a concordant tendency to grade cerebral gliomas. • Their high-grade concordant cases revealed at least 95 % positive predictive values. • Their low-grade concordant cases revealed about 70–80% negative predictive values.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N633101f9187a43a1b96265c335e67ab0
57 Nde4b9b90f0344bfdbd26b584cac14423
58 sg:journal.1289120
59 schema:name Grading of Cerebral Glioma with Multiparametric MR Imaging and 18F-FDG-PET: Concordance and Accuracy
60 schema:pagination 380-389
61 schema:productId Nb16d96ac6e6c425c971ba7bae3537f57
62 Ncb0cc75f32534b8e95848854bc2a1284
63 Ncf0c38e28101485389e81b42e684a673
64 Nea958f4b9d564891a8fdee291a466e68
65 Nf90dfc380de44a94928e6475e7dd991e
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053279158
67 https://doi.org/10.1007/s00330-013-3019-3
68 schema:sdDatePublished 2019-04-10T14:11
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N1c04c2af012743c88b42220d6409e2b1
71 schema:url http://link.springer.com/10.1007%2Fs00330-013-3019-3
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0ab6f872f25d41458a6ebf39d114ebac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Aged, 80 and over
77 rdf:type schema:DefinedTerm
78 N147fe9f0135d49098f8d42b3f2e86c31 rdf:first sg:person.01346514703.25
79 rdf:rest N3e553018052f46adb7ead2a189565a54
80 N1b13c5eed0ad43e3bd42ec9bcc441d60 rdf:first sg:person.01045234676.85
81 rdf:rest N521079f2b70749d0b51435744c23e24f
82 N1c04c2af012743c88b42220d6409e2b1 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N21e80a639a364c0ebc10ebb626f82867 rdf:first sg:person.01022612523.82
85 rdf:rest N147fe9f0135d49098f8d42b3f2e86c31
86 N2273cbccad4e4d8c9f396c308a04566a rdf:first N6f3274fbc1814ebfaa852dbae7223ef1
87 rdf:rest N1b13c5eed0ad43e3bd42ec9bcc441d60
88 N25dd3852c1ee44518a745ee3c7d7b568 rdf:first sg:person.01077644577.56
89 rdf:rest N21e80a639a364c0ebc10ebb626f82867
90 N2ca37a0e4d77482390b943611381097a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Aged
92 rdf:type schema:DefinedTerm
93 N31328a16b4b4434b8aaa8d6355cc93a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Brain Neoplasms
95 rdf:type schema:DefinedTerm
96 N3e553018052f46adb7ead2a189565a54 rdf:first sg:person.01324123377.54
97 rdf:rest N2273cbccad4e4d8c9f396c308a04566a
98 N43efeefd22e947e9b71cea81d60f9021 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Retrospective Studies
100 rdf:type schema:DefinedTerm
101 N521079f2b70749d0b51435744c23e24f rdf:first sg:person.01054225146.18
102 rdf:rest rdf:nil
103 N55382967ec5246e1864837996ea02bae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N5e52e4e0358c4bb1b562e36561fd84d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Fluorodeoxyglucose F18
108 rdf:type schema:DefinedTerm
109 N633101f9187a43a1b96265c335e67ab0 schema:volumeNumber 24
110 rdf:type schema:PublicationVolume
111 N683f4f376c9446ba91a9818908680392 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Glioma
113 rdf:type schema:DefinedTerm
114 N6f3274fbc1814ebfaa852dbae7223ef1 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
115 schema:familyName Eun
116 schema:givenName Yong
117 rdf:type schema:Person
118 N716c6de8337542809fee5b019f93155b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Diffusion Magnetic Resonance Imaging
120 rdf:type schema:DefinedTerm
121 N7a00cc12a77e4173a65491263f6b28b3 rdf:first sg:person.014620401064.55
122 rdf:rest N25dd3852c1ee44518a745ee3c7d7b568
123 N7ef4b9b9a82c4efd8dd590c0695911ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Male
125 rdf:type schema:DefinedTerm
126 Na0fe16ca140e4f20b10ddd5876415365 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Radiopharmaceuticals
128 rdf:type schema:DefinedTerm
129 Nabd6141c48c64d66b5c152d2c9f204f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Positron-Emission Tomography
131 rdf:type schema:DefinedTerm
132 Nb16d96ac6e6c425c971ba7bae3537f57 schema:name readcube_id
133 schema:value fdc7bb5d1e5f6af9bbcee142db076cbd5f671a40b025e91eedc5581ef254747b
134 rdf:type schema:PropertyValue
135 Nb5df38e128bb47a58dd411ce8554cfcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Adolescent
137 rdf:type schema:DefinedTerm
138 Nba81b294cccd42fba51c08fc1fb95e77 rdf:first sg:person.01020423064.40
139 rdf:rest N7a00cc12a77e4173a65491263f6b28b3
140 Nbd0bead8565f41b8a5885337cf3f4697 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Neoplasm Staging
142 rdf:type schema:DefinedTerm
143 Nca81152594f045d7be33ff4dbc5f31dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Predictive Value of Tests
145 rdf:type schema:DefinedTerm
146 Ncb0cc75f32534b8e95848854bc2a1284 schema:name dimensions_id
147 schema:value pub.1053279158
148 rdf:type schema:PropertyValue
149 Ncf0c38e28101485389e81b42e684a673 schema:name pubmed_id
150 schema:value 24078054
151 rdf:type schema:PropertyValue
152 Nde4b9b90f0344bfdbd26b584cac14423 schema:issueNumber 2
153 rdf:type schema:PublicationIssue
154 Ndf7829020e01424ebbf9d9e02970600c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Middle Aged
156 rdf:type schema:DefinedTerm
157 Nea958f4b9d564891a8fdee291a466e68 schema:name nlm_unique_id
158 schema:value 9114774
159 rdf:type schema:PropertyValue
160 Nf054202919974533adcce839c3a71eb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Adult
162 rdf:type schema:DefinedTerm
163 Nf56e8cd567e844cf883eb8f6c836b57d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Female
165 rdf:type schema:DefinedTerm
166 Nf90dfc380de44a94928e6475e7dd991e schema:name doi
167 schema:value 10.1007/s00330-013-3019-3
168 rdf:type schema:PropertyValue
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
173 schema:name Clinical Sciences
174 rdf:type schema:DefinedTerm
175 sg:journal.1289120 schema:issn 0938-7994
176 1432-1084
177 schema:name European Radiology
178 rdf:type schema:Periodical
179 sg:person.01020423064.40 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
180 schema:familyName Yoon
181 schema:givenName Jeong Hee
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020423064.40
183 rdf:type schema:Person
184 sg:person.01022612523.82 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
185 schema:familyName Sohn
186 schema:givenName Chul-Ho
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022612523.82
188 rdf:type schema:Person
189 sg:person.01045234676.85 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
190 schema:familyName Song
191 schema:givenName Yong Sub
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045234676.85
193 rdf:type schema:Person
194 sg:person.01054225146.18 schema:affiliation https://www.grid.ac/institutes/grid.412678.e
195 schema:familyName Chang
196 schema:givenName Kee-Hyun
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054225146.18
198 rdf:type schema:Person
199 sg:person.01077644577.56 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
200 schema:familyName Kang
201 schema:givenName Won Jun
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077644577.56
203 rdf:type schema:Person
204 sg:person.01324123377.54 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
205 schema:familyName Yun
206 schema:givenName Tae Jin
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324123377.54
208 rdf:type schema:Person
209 sg:person.01346514703.25 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
210 schema:familyName Choi
211 schema:givenName Seung Hong
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346514703.25
213 rdf:type schema:Person
214 sg:person.014620401064.55 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
215 schema:familyName Kim
216 schema:givenName Ji-hoon
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014620401064.55
218 rdf:type schema:Person
219 sg:pub.10.1007/bf00598951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052252182
220 https://doi.org/10.1007/bf00598951
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00234-002-0816-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045212225
223 https://doi.org/10.1007/s00234-002-0816-9
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00234-006-0102-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027434611
226 https://doi.org/10.1007/s00234-006-0102-3
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00234-007-0253-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026073221
229 https://doi.org/10.1007/s00234-007-0253-x
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s00234-013-1145-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038185533
232 https://doi.org/10.1007/s00234-013-1145-x
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s00259-001-0690-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041684840
235 https://doi.org/10.1007/s00259-001-0690-4
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s00330-008-1288-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037480893
238 https://doi.org/10.1007/s00330-008-1288-z
239 rdf:type schema:CreativeWork
240 sg:pub.10.1023/a:1006431120031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034732877
241 https://doi.org/10.1023/a:1006431120031
242 rdf:type schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1074629865 schema:CreativeWork
244 https://app.dimensions.ai/details/publication/pub.1075239043 schema:CreativeWork
245 https://app.dimensions.ai/details/publication/pub.1076599380 schema:CreativeWork
246 https://app.dimensions.ai/details/publication/pub.1076797095 schema:CreativeWork
247 https://app.dimensions.ai/details/publication/pub.1077206466 schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1077283454 schema:CreativeWork
249 https://doi.org/10.1016/j.ejrad.2011.01.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018343337
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jocn.2009.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017630894
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1111/j.1552-6569.2010.00561.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031090057
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1148/radiol.11110686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043235800
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1148/radiol.2243011014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033651036
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1148/radiology.174.2.2153310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078390364
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1148/radiology.195.1.7892494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082553742
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1258/ar.2011.100510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078458213
264 rdf:type schema:CreativeWork
265 https://doi.org/10.2214/ajr.171.6.9843274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069322045
266 rdf:type schema:CreativeWork
267 https://doi.org/10.3174/ajnr.a0842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041221372
268 rdf:type schema:CreativeWork
269 https://doi.org/10.3174/ajnr.a0851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022186611
270 rdf:type schema:CreativeWork
271 https://doi.org/10.3174/ajnr.a1121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005047027
272 rdf:type schema:CreativeWork
273 https://doi.org/10.3174/ajnr.a1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018316158
274 rdf:type schema:CreativeWork
275 https://doi.org/10.3174/ajnr.a2846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019050944
276 rdf:type schema:CreativeWork
277 https://doi.org/10.3348/jkrs.1994.31.3.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071152600
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
280 schema:name Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
281 Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
284 schema:name College of Medicine, Seoul National University, Seoul, Korea
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
287 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
288 rdf:type schema:Organization
289 https://www.grid.ac/institutes/grid.412678.e schema:alternateName Soonchunhyang University Hospital
290 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
291 Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...