How to differentiate benign from malignant myometrial tumours using MR imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

Isabelle Thomassin-Naggara, Sophie Dechoux, Claire Bonneau, Audrey Morel, Roman Rouzier, Marie-France Carette, Emile Daraï, Marc Bazot

ABSTRACT

PURPOSE: To retrospectively evaluate the ability of magnetic resonance imaging (MRI) to differentiate malignant from benign myometrial tumours. METHODS: Fifty-one women underwent MRI before surgery for evaluation of a solitary myometrial tumour. At histopathology, there were 25 uncertain or malignant mesenchymal tumours and 26 benign leiomyomas. Conventional morphological MRI criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC). Odds ratios (OR) were calculated for each criterion. A multivariate analysis was performed to construct an interpretation model. RESULTS: The significant criteria for prediction of malignancy were high b 1,000 signal intensity (OR = +∞), intermediate T2-weighted signal intensity (OR = +∞), mean ADC (OR = 25.1), patient age (OR = 20.1), intra-tumoral haemorrhage (OR = 21.35), endometrial thickening (OR = 11), T2-weighted signal heterogeneity (OR = 10.2), menopausal status (OR = 9.7), heterogeneous enhancement (OR = 8) and non-myometrial origin on MRI (OR = 4.9). In the recursive partitioning model, using b 1,000 signal intensity, T2 signal intensity, mean ADC, and patient age, the model correctly classified benign and malignant tumours in 47 of the 51 cases (92.4 %). CONCLUSION: We have developed an interpretation model usable in routine practice for myometrial tumours discovered at MRI including T2 signal, b 1,000 signal and ADC measurement. KEY POINTS: • MRI is widely used to differentiate benign from malignant myometrial tumours. • By combining T2-weighted, b 1,000 and ADC features, MRI is 92.4 % accurate. • DWI may limit misdiagnoses of uterine sarcoma as benign leiomyoma. • Patient age is important when considering a solitary myometrial tumour. More... »

PAGES

2306-2314

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9

DOI

http://dx.doi.org/10.1007/s00330-013-2819-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010266994

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23563602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leiomyoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myometrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Odds Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uterine Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France", 
            "Service de Radiologie, H\u00f4pital Tenon, 4 rue de la Chine, 75020, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomassin-Naggara", 
        "givenName": "Isabelle", 
        "id": "sg:person.01231773263.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231773263.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dechoux", 
        "givenName": "Sophie", 
        "id": "sg:person.01357207647.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357207647.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Gynecology-Obstetrics, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonneau", 
        "givenName": "Claire", 
        "id": "sg:person.0633603547.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633603547.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morel", 
        "givenName": "Audrey", 
        "id": "sg:person.014147111127.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147111127.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Gynecology-Obstetrics, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouzier", 
        "givenName": "Roman", 
        "id": "sg:person.01101754741.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carette", 
        "givenName": "Marie-France", 
        "id": "sg:person.0721242617.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721242617.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Gynecology-Obstetrics, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dara\u00ef", 
        "givenName": "Emile", 
        "id": "sg:person.01166567564.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazot", 
        "givenName": "Marc", 
        "id": "sg:person.01157147053.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157147053.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejogrb.2012.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000489212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpobgyn.2011.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028859385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0787-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034499594", 
          "https://doi.org/10.1007/s00330-007-0787-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0787-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034499594", 
          "https://doi.org/10.1007/s00330-007-0787-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/01443615.2011.644357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034866532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1299-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490388", 
          "https://doi.org/10.1007/s00330-009-1299-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1299-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490388", 
          "https://doi.org/10.1007/s00330-009-1299-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2008.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043268862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvir.2011.01.458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045533614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpobgyn.2011.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052337256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.177.6.1771307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069324393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.19.5.g99se131179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074522200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.19.suppl_1.g99oc04s131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074533080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.25si055510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077127876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.326125517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078634184"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08", 
    "datePublishedReg": "2013-08-01", 
    "description": "PURPOSE: To retrospectively evaluate the ability of magnetic resonance imaging (MRI) to differentiate malignant from benign myometrial tumours.\nMETHODS: Fifty-one women underwent MRI before surgery for evaluation of a solitary myometrial tumour. At histopathology, there were 25 uncertain or malignant mesenchymal tumours and 26 benign leiomyomas. Conventional morphological MRI criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC). Odds ratios (OR) were calculated for each criterion. A multivariate analysis was performed to construct an interpretation model.\nRESULTS: The significant criteria for prediction of malignancy were high b 1,000 signal intensity (OR\u2009=\u2009+\u221e), intermediate T2-weighted signal intensity (OR\u2009=\u2009+\u221e), mean ADC (OR\u2009=\u200925.1), patient age (OR\u2009=\u200920.1), intra-tumoral haemorrhage (OR\u2009=\u200921.35), endometrial thickening (OR\u2009=\u200911), T2-weighted signal heterogeneity (OR\u2009=\u200910.2), menopausal status (OR\u2009=\u20099.7), heterogeneous enhancement (OR\u2009=\u20098) and non-myometrial origin on MRI (OR\u2009=\u20094.9). In the recursive partitioning model, using b 1,000 signal intensity, T2 signal intensity, mean ADC, and patient age, the model correctly classified benign and malignant tumours in 47 of the 51 cases (92.4\u00a0%).\nCONCLUSION: We have developed an interpretation model usable in routine practice for myometrial tumours discovered at MRI including T2 signal, b 1,000 signal and ADC measurement.\nKEY POINTS: \u2022 MRI is widely used to differentiate benign from malignant myometrial tumours. \u2022 By combining T2-weighted, b 1,000 and ADC features, MRI is 92.4\u2009% accurate. \u2022 DWI may limit misdiagnoses of uterine sarcoma as benign leiomyoma. \u2022 Patient age is important when considering a solitary myometrial tumour.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-013-2819-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "How to differentiate benign from malignant myometrial tumours using MR imaging", 
    "pagination": "2306-2314", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "30e9e64b33e24edfa287cfa9e7a09771940b332cba5a13430f223e129bfb15ac"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23563602"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-013-2819-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010266994"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-013-2819-9", 
      "https://app.dimensions.ai/details/publication/pub.1010266994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00330-013-2819-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      61 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-013-2819-9 schema:about N00107a195a394d9e840a43141364f5c1
2 N1027710b0de74bbfa8280b598e463cde
3 N15ab2b5fd4534188bdf51c565ec40877
4 N43d1d9726aca4e4a8d6ab4bc2d640ec6
5 N5cac06d58bf74f77b20d510ccf34b414
6 N7f8b8e0ced1e4afc9f46fbe385000550
7 N9ec6b4aa02564ac08fc948217f2b9db7
8 Naf25985d2bc042b0b55bdfc30b82ed04
9 Nb5100306e29e4417bf419de01aa1c144
10 Nbcf79634806b462bbd775614442d6cb1
11 Nbf095aca0f1b468e8cde6d2abc14c657
12 Nccd6d7947cad466c896e4cce7a29f57d
13 Ncf2e1d24ceeb455dbddd7d5beb281a5d
14 Nda1c3f92e93245818f005b096a2e127a
15 Ne5b5114663b8467e83528a771c65b0d3
16 Nf436e3d1edde46a0a2047ae89ed7084a
17 Nf62974575e584fc28d8501f798b86cfd
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author Nacb88312c49441f1a3ce76e57861f8ef
21 schema:citation sg:pub.10.1007/s00330-007-0787-7
22 sg:pub.10.1007/s00330-009-1299-4
23 sg:pub.10.1007/s00330-009-1471-x
24 https://doi.org/10.1002/sim.2154
25 https://doi.org/10.1016/j.bpobgyn.2011.07.002
26 https://doi.org/10.1016/j.bpobgyn.2011.08.002
27 https://doi.org/10.1016/j.ejogrb.2012.07.030
28 https://doi.org/10.1016/j.jvir.2011.01.458
29 https://doi.org/10.1016/j.mric.2008.07.012
30 https://doi.org/10.1148/radiographics.19.5.g99se131179
31 https://doi.org/10.1148/radiographics.19.suppl_1.g99oc04s131
32 https://doi.org/10.1148/rg.25si055510
33 https://doi.org/10.1148/rg.326125517
34 https://doi.org/10.2214/ajr.177.6.1771307
35 https://doi.org/10.3109/01443615.2011.644357
36 schema:datePublished 2013-08
37 schema:datePublishedReg 2013-08-01
38 schema:description PURPOSE: To retrospectively evaluate the ability of magnetic resonance imaging (MRI) to differentiate malignant from benign myometrial tumours. METHODS: Fifty-one women underwent MRI before surgery for evaluation of a solitary myometrial tumour. At histopathology, there were 25 uncertain or malignant mesenchymal tumours and 26 benign leiomyomas. Conventional morphological MRI criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC). Odds ratios (OR) were calculated for each criterion. A multivariate analysis was performed to construct an interpretation model. RESULTS: The significant criteria for prediction of malignancy were high b 1,000 signal intensity (OR = +∞), intermediate T2-weighted signal intensity (OR = +∞), mean ADC (OR = 25.1), patient age (OR = 20.1), intra-tumoral haemorrhage (OR = 21.35), endometrial thickening (OR = 11), T2-weighted signal heterogeneity (OR = 10.2), menopausal status (OR = 9.7), heterogeneous enhancement (OR = 8) and non-myometrial origin on MRI (OR = 4.9). In the recursive partitioning model, using b 1,000 signal intensity, T2 signal intensity, mean ADC, and patient age, the model correctly classified benign and malignant tumours in 47 of the 51 cases (92.4 %). CONCLUSION: We have developed an interpretation model usable in routine practice for myometrial tumours discovered at MRI including T2 signal, b 1,000 signal and ADC measurement. KEY POINTS: • MRI is widely used to differentiate benign from malignant myometrial tumours. • By combining T2-weighted, b 1,000 and ADC features, MRI is 92.4 % accurate. • DWI may limit misdiagnoses of uterine sarcoma as benign leiomyoma. • Patient age is important when considering a solitary myometrial tumour.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N8fcff3c3aa174f619747eb1e3f3f3a91
43 N9c28290423ce44ec932f6e0a9c116bb9
44 sg:journal.1289120
45 schema:name How to differentiate benign from malignant myometrial tumours using MR imaging
46 schema:pagination 2306-2314
47 schema:productId N33eb3176d521401fa3925556b479eb4b
48 N3ffde767e8e84f43884b611fd0db9977
49 N74f67bda319c4fa88e5ca179aff66fd2
50 N9c0c6823b6604610a771dcbfccffd67e
51 Na968ba345bde4b42b615798691678465
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010266994
53 https://doi.org/10.1007/s00330-013-2819-9
54 schema:sdDatePublished 2019-04-10T23:18
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N73aa39b359a2454380512a464d0a729d
57 schema:url http://link.springer.com/10.1007/s00330-013-2819-9
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N00107a195a394d9e840a43141364f5c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Diffusion
63 rdf:type schema:DefinedTerm
64 N1027710b0de74bbfa8280b598e463cde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Middle Aged
66 rdf:type schema:DefinedTerm
67 N15ab2b5fd4534188bdf51c565ec40877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Uterine Neoplasms
69 rdf:type schema:DefinedTerm
70 N33eb3176d521401fa3925556b479eb4b schema:name readcube_id
71 schema:value 30e9e64b33e24edfa287cfa9e7a09771940b332cba5a13430f223e129bfb15ac
72 rdf:type schema:PropertyValue
73 N3ffde767e8e84f43884b611fd0db9977 schema:name dimensions_id
74 schema:value pub.1010266994
75 rdf:type schema:PropertyValue
76 N4017ff2f23774c758cfad62cd52ac2f0 rdf:first sg:person.014147111127.03
77 rdf:rest Nfc90814628d64891943c04afe2fdbeab
78 N4385215a23854ff7a846d5ef8f876d35 rdf:first sg:person.01357207647.14
79 rdf:rest N48e83522c73c41d9a49af5cbe493d6ee
80 N43d1d9726aca4e4a8d6ab4bc2d640ec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Aged
82 rdf:type schema:DefinedTerm
83 N48e83522c73c41d9a49af5cbe493d6ee rdf:first sg:person.0633603547.76
84 rdf:rest N4017ff2f23774c758cfad62cd52ac2f0
85 N4ae91ea8df24492b86ba1437d7730e78 rdf:first sg:person.0721242617.65
86 rdf:rest N6b4a7c57eb0d4df5bb15d88aeacf38e4
87 N5cac06d58bf74f77b20d510ccf34b414 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Cohort Studies
89 rdf:type schema:DefinedTerm
90 N6b4a7c57eb0d4df5bb15d88aeacf38e4 rdf:first sg:person.01166567564.74
91 rdf:rest Nf36a85a29fc44f5cad76eb8039e37211
92 N73aa39b359a2454380512a464d0a729d schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N74f67bda319c4fa88e5ca179aff66fd2 schema:name pubmed_id
95 schema:value 23563602
96 rdf:type schema:PropertyValue
97 N7f8b8e0ced1e4afc9f46fbe385000550 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Reproducibility of Results
99 rdf:type schema:DefinedTerm
100 N8fcff3c3aa174f619747eb1e3f3f3a91 schema:issueNumber 8
101 rdf:type schema:PublicationIssue
102 N9c0c6823b6604610a771dcbfccffd67e schema:name nlm_unique_id
103 schema:value 9114774
104 rdf:type schema:PropertyValue
105 N9c28290423ce44ec932f6e0a9c116bb9 schema:volumeNumber 23
106 rdf:type schema:PublicationVolume
107 N9ec6b4aa02564ac08fc948217f2b9db7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Odds Ratio
109 rdf:type schema:DefinedTerm
110 Na968ba345bde4b42b615798691678465 schema:name doi
111 schema:value 10.1007/s00330-013-2819-9
112 rdf:type schema:PropertyValue
113 Nacb88312c49441f1a3ce76e57861f8ef rdf:first sg:person.01231773263.15
114 rdf:rest N4385215a23854ff7a846d5ef8f876d35
115 Naf25985d2bc042b0b55bdfc30b82ed04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Female
117 rdf:type schema:DefinedTerm
118 Nb5100306e29e4417bf419de01aa1c144 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Magnetic Resonance Imaging
120 rdf:type schema:DefinedTerm
121 Nbcf79634806b462bbd775614442d6cb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Retrospective Studies
123 rdf:type schema:DefinedTerm
124 Nbf095aca0f1b468e8cde6d2abc14c657 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Aged, 80 and over
126 rdf:type schema:DefinedTerm
127 Nccd6d7947cad466c896e4cce7a29f57d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Humans
129 rdf:type schema:DefinedTerm
130 Ncf2e1d24ceeb455dbddd7d5beb281a5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Observer Variation
132 rdf:type schema:DefinedTerm
133 Nda1c3f92e93245818f005b096a2e127a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Multivariate Analysis
135 rdf:type schema:DefinedTerm
136 Ne5b5114663b8467e83528a771c65b0d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Leiomyoma
138 rdf:type schema:DefinedTerm
139 Nf36a85a29fc44f5cad76eb8039e37211 rdf:first sg:person.01157147053.12
140 rdf:rest rdf:nil
141 Nf436e3d1edde46a0a2047ae89ed7084a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Myometrium
143 rdf:type schema:DefinedTerm
144 Nf62974575e584fc28d8501f798b86cfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Adult
146 rdf:type schema:DefinedTerm
147 Nfc90814628d64891943c04afe2fdbeab rdf:first sg:person.01101754741.17
148 rdf:rest N4ae91ea8df24492b86ba1437d7730e78
149 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
150 schema:name Medical and Health Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
153 schema:name Clinical Sciences
154 rdf:type schema:DefinedTerm
155 sg:journal.1289120 schema:issn 0938-7994
156 1432-1084
157 schema:name European Radiology
158 rdf:type schema:Periodical
159 sg:person.01101754741.17 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
160 schema:familyName Rouzier
161 schema:givenName Roman
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17
163 rdf:type schema:Person
164 sg:person.01157147053.12 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
165 schema:familyName Bazot
166 schema:givenName Marc
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157147053.12
168 rdf:type schema:Person
169 sg:person.01166567564.74 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
170 schema:familyName Daraï
171 schema:givenName Emile
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74
173 rdf:type schema:Person
174 sg:person.01231773263.15 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
175 schema:familyName Thomassin-Naggara
176 schema:givenName Isabelle
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231773263.15
178 rdf:type schema:Person
179 sg:person.01357207647.14 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
180 schema:familyName Dechoux
181 schema:givenName Sophie
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357207647.14
183 rdf:type schema:Person
184 sg:person.014147111127.03 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
185 schema:familyName Morel
186 schema:givenName Audrey
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147111127.03
188 rdf:type schema:Person
189 sg:person.0633603547.76 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
190 schema:familyName Bonneau
191 schema:givenName Claire
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633603547.76
193 rdf:type schema:Person
194 sg:person.0721242617.65 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
195 schema:familyName Carette
196 schema:givenName Marie-France
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721242617.65
198 rdf:type schema:Person
199 sg:pub.10.1007/s00330-007-0787-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034499594
200 https://doi.org/10.1007/s00330-007-0787-7
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00330-009-1299-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040490388
203 https://doi.org/10.1007/s00330-009-1299-4
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00330-009-1471-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051719875
206 https://doi.org/10.1007/s00330-009-1471-x
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/sim.2154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638199
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.bpobgyn.2011.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028859385
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.bpobgyn.2011.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052337256
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ejogrb.2012.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000489212
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.jvir.2011.01.458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045533614
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.mric.2008.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043268862
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1148/radiographics.19.5.g99se131179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074522200
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1148/radiographics.19.suppl_1.g99oc04s131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074533080
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1148/rg.25si055510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077127876
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1148/rg.326125517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078634184
227 rdf:type schema:CreativeWork
228 https://doi.org/10.2214/ajr.177.6.1771307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069324393
229 rdf:type schema:CreativeWork
230 https://doi.org/10.3109/01443615.2011.644357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034866532
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.413483.9 schema:alternateName Tenon Hospital
233 schema:name Department of Gynecology-Obstetrics, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris and Université Pierre et Marie Curie, Paris, France
234 Department of Radiology, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris and Université Pierre et Marie Curie, Paris, France
235 Service de Radiologie, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...