How to differentiate benign from malignant myometrial tumours using MR imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

Isabelle Thomassin-Naggara, Sophie Dechoux, Claire Bonneau, Audrey Morel, Roman Rouzier, Marie-France Carette, Emile Daraï, Marc Bazot

ABSTRACT

PURPOSE: To retrospectively evaluate the ability of magnetic resonance imaging (MRI) to differentiate malignant from benign myometrial tumours. METHODS: Fifty-one women underwent MRI before surgery for evaluation of a solitary myometrial tumour. At histopathology, there were 25 uncertain or malignant mesenchymal tumours and 26 benign leiomyomas. Conventional morphological MRI criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC). Odds ratios (OR) were calculated for each criterion. A multivariate analysis was performed to construct an interpretation model. RESULTS: The significant criteria for prediction of malignancy were high b 1,000 signal intensity (OR = +∞), intermediate T2-weighted signal intensity (OR = +∞), mean ADC (OR = 25.1), patient age (OR = 20.1), intra-tumoral haemorrhage (OR = 21.35), endometrial thickening (OR = 11), T2-weighted signal heterogeneity (OR = 10.2), menopausal status (OR = 9.7), heterogeneous enhancement (OR = 8) and non-myometrial origin on MRI (OR = 4.9). In the recursive partitioning model, using b 1,000 signal intensity, T2 signal intensity, mean ADC, and patient age, the model correctly classified benign and malignant tumours in 47 of the 51 cases (92.4 %). CONCLUSION: We have developed an interpretation model usable in routine practice for myometrial tumours discovered at MRI including T2 signal, b 1,000 signal and ADC measurement. KEY POINTS: • MRI is widely used to differentiate benign from malignant myometrial tumours. • By combining T2-weighted, b 1,000 and ADC features, MRI is 92.4 % accurate. • DWI may limit misdiagnoses of uterine sarcoma as benign leiomyoma. • Patient age is important when considering a solitary myometrial tumour. More... »

PAGES

2306-2314

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9

DOI

http://dx.doi.org/10.1007/s00330-013-2819-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010266994

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23563602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leiomyoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myometrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Odds Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uterine Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France", 
            "Service de Radiologie, H\u00f4pital Tenon, 4 rue de la Chine, 75020, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomassin-Naggara", 
        "givenName": "Isabelle", 
        "id": "sg:person.01231773263.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231773263.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dechoux", 
        "givenName": "Sophie", 
        "id": "sg:person.01357207647.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357207647.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Gynecology-Obstetrics, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonneau", 
        "givenName": "Claire", 
        "id": "sg:person.0633603547.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633603547.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morel", 
        "givenName": "Audrey", 
        "id": "sg:person.014147111127.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147111127.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Gynecology-Obstetrics, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouzier", 
        "givenName": "Roman", 
        "id": "sg:person.01101754741.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carette", 
        "givenName": "Marie-France", 
        "id": "sg:person.0721242617.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721242617.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Gynecology-Obstetrics, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dara\u00ef", 
        "givenName": "Emile", 
        "id": "sg:person.01166567564.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris and Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazot", 
        "givenName": "Marc", 
        "id": "sg:person.01157147053.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157147053.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejogrb.2012.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000489212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpobgyn.2011.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028859385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0787-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034499594", 
          "https://doi.org/10.1007/s00330-007-0787-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0787-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034499594", 
          "https://doi.org/10.1007/s00330-007-0787-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/01443615.2011.644357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034866532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1299-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490388", 
          "https://doi.org/10.1007/s00330-009-1299-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1299-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490388", 
          "https://doi.org/10.1007/s00330-009-1299-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2008.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043268862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvir.2011.01.458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045533614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpobgyn.2011.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052337256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.177.6.1771307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069324393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.19.5.g99se131179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074522200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.19.suppl_1.g99oc04s131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074533080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.25si055510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077127876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.326125517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078634184"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08", 
    "datePublishedReg": "2013-08-01", 
    "description": "PURPOSE: To retrospectively evaluate the ability of magnetic resonance imaging (MRI) to differentiate malignant from benign myometrial tumours.\nMETHODS: Fifty-one women underwent MRI before surgery for evaluation of a solitary myometrial tumour. At histopathology, there were 25 uncertain or malignant mesenchymal tumours and 26 benign leiomyomas. Conventional morphological MRI criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC). Odds ratios (OR) were calculated for each criterion. A multivariate analysis was performed to construct an interpretation model.\nRESULTS: The significant criteria for prediction of malignancy were high b 1,000 signal intensity (OR\u2009=\u2009+\u221e), intermediate T2-weighted signal intensity (OR\u2009=\u2009+\u221e), mean ADC (OR\u2009=\u200925.1), patient age (OR\u2009=\u200920.1), intra-tumoral haemorrhage (OR\u2009=\u200921.35), endometrial thickening (OR\u2009=\u200911), T2-weighted signal heterogeneity (OR\u2009=\u200910.2), menopausal status (OR\u2009=\u20099.7), heterogeneous enhancement (OR\u2009=\u20098) and non-myometrial origin on MRI (OR\u2009=\u20094.9). In the recursive partitioning model, using b 1,000 signal intensity, T2 signal intensity, mean ADC, and patient age, the model correctly classified benign and malignant tumours in 47 of the 51 cases (92.4\u00a0%).\nCONCLUSION: We have developed an interpretation model usable in routine practice for myometrial tumours discovered at MRI including T2 signal, b 1,000 signal and ADC measurement.\nKEY POINTS: \u2022 MRI is widely used to differentiate benign from malignant myometrial tumours. \u2022 By combining T2-weighted, b 1,000 and ADC features, MRI is 92.4\u2009% accurate. \u2022 DWI may limit misdiagnoses of uterine sarcoma as benign leiomyoma. \u2022 Patient age is important when considering a solitary myometrial tumour.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-013-2819-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "How to differentiate benign from malignant myometrial tumours using MR imaging", 
    "pagination": "2306-2314", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "30e9e64b33e24edfa287cfa9e7a09771940b332cba5a13430f223e129bfb15ac"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23563602"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-013-2819-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010266994"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-013-2819-9", 
      "https://app.dimensions.ai/details/publication/pub.1010266994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00330-013-2819-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2819-9'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      61 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-013-2819-9 schema:about N160829e63bb94a2e95a413e29de38fbe
2 N33a6300a3c7f49229ec500be18aa1baf
3 N60af74377a144f0eb21a90d8e4b7700d
4 N6a0defbc27b141ec8ae572923dba2e2a
5 N7b13ff755be94068a813131b0ea36279
6 N87f06a2ba728427c80cb69858053429b
7 N8a3980ed79c24b91971a88ac3177eb4e
8 Na05735794e654e6ba0c3f7734552816a
9 Na601a094049d4491b5cb46535f9d63fb
10 Nb7e6cb679be549dcbc7137504c319584
11 Ncf234bff1bc24b37915167f23c301bab
12 Ne108feadf1884bddb34f17e36c68909d
13 Ne1f16f6aa3b04c369ea9fb31d9ba0ec3
14 Ne47270cc5aec428aa03eb8b79af6b0e7
15 Ne6c1b779c6e94329aecb304b73889616
16 Nf7c94485f89d46c4bd8a7e54ac54c779
17 Nff392f0028434a928a8ff041467d018d
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N7a75911c51914048b0acb1b73af04bb1
21 schema:citation sg:pub.10.1007/s00330-007-0787-7
22 sg:pub.10.1007/s00330-009-1299-4
23 sg:pub.10.1007/s00330-009-1471-x
24 https://doi.org/10.1002/sim.2154
25 https://doi.org/10.1016/j.bpobgyn.2011.07.002
26 https://doi.org/10.1016/j.bpobgyn.2011.08.002
27 https://doi.org/10.1016/j.ejogrb.2012.07.030
28 https://doi.org/10.1016/j.jvir.2011.01.458
29 https://doi.org/10.1016/j.mric.2008.07.012
30 https://doi.org/10.1148/radiographics.19.5.g99se131179
31 https://doi.org/10.1148/radiographics.19.suppl_1.g99oc04s131
32 https://doi.org/10.1148/rg.25si055510
33 https://doi.org/10.1148/rg.326125517
34 https://doi.org/10.2214/ajr.177.6.1771307
35 https://doi.org/10.3109/01443615.2011.644357
36 schema:datePublished 2013-08
37 schema:datePublishedReg 2013-08-01
38 schema:description PURPOSE: To retrospectively evaluate the ability of magnetic resonance imaging (MRI) to differentiate malignant from benign myometrial tumours. METHODS: Fifty-one women underwent MRI before surgery for evaluation of a solitary myometrial tumour. At histopathology, there were 25 uncertain or malignant mesenchymal tumours and 26 benign leiomyomas. Conventional morphological MRI criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC). Odds ratios (OR) were calculated for each criterion. A multivariate analysis was performed to construct an interpretation model. RESULTS: The significant criteria for prediction of malignancy were high b 1,000 signal intensity (OR = +∞), intermediate T2-weighted signal intensity (OR = +∞), mean ADC (OR = 25.1), patient age (OR = 20.1), intra-tumoral haemorrhage (OR = 21.35), endometrial thickening (OR = 11), T2-weighted signal heterogeneity (OR = 10.2), menopausal status (OR = 9.7), heterogeneous enhancement (OR = 8) and non-myometrial origin on MRI (OR = 4.9). In the recursive partitioning model, using b 1,000 signal intensity, T2 signal intensity, mean ADC, and patient age, the model correctly classified benign and malignant tumours in 47 of the 51 cases (92.4 %). CONCLUSION: We have developed an interpretation model usable in routine practice for myometrial tumours discovered at MRI including T2 signal, b 1,000 signal and ADC measurement. KEY POINTS: • MRI is widely used to differentiate benign from malignant myometrial tumours. • By combining T2-weighted, b 1,000 and ADC features, MRI is 92.4 % accurate. • DWI may limit misdiagnoses of uterine sarcoma as benign leiomyoma. • Patient age is important when considering a solitary myometrial tumour.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf Nc2cb24546bb346b8920f0388e6db0a69
43 Nc4282a926e1d4cf8ac7f5facc9d0113d
44 sg:journal.1289120
45 schema:name How to differentiate benign from malignant myometrial tumours using MR imaging
46 schema:pagination 2306-2314
47 schema:productId N80713f7dbb09454cb338f49648faac04
48 N8650bf3da1494e1bb710c809b520ed24
49 Nb0614045939740f193ad71184bed7b8c
50 Ne8d4f2368a7f436b933780280665cc9f
51 Nec48a70c58714a948d667ef8012c1243
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010266994
53 https://doi.org/10.1007/s00330-013-2819-9
54 schema:sdDatePublished 2019-04-10T23:18
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nb95d4b90fc4c4749b0cf660c26e8b1db
57 schema:url http://link.springer.com/10.1007/s00330-013-2819-9
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N160829e63bb94a2e95a413e29de38fbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Humans
63 rdf:type schema:DefinedTerm
64 N187cb878e7b24a5bbb9e055f5b1765eb rdf:first sg:person.0633603547.76
65 rdf:rest Nafd0f8a0ed1f4c57af65ff731426bc58
66 N33a6300a3c7f49229ec500be18aa1baf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Uterine Neoplasms
68 rdf:type schema:DefinedTerm
69 N55f20c311e634e079cf1818e6cdaa850 rdf:first sg:person.01101754741.17
70 rdf:rest N66b81212994d4ddca4728a2ee962b84f
71 N60af74377a144f0eb21a90d8e4b7700d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Cohort Studies
73 rdf:type schema:DefinedTerm
74 N66b81212994d4ddca4728a2ee962b84f rdf:first sg:person.0721242617.65
75 rdf:rest Nb9ab8ae2240b44c7bfe7ff8fa6918f6f
76 N6a0defbc27b141ec8ae572923dba2e2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Adult
78 rdf:type schema:DefinedTerm
79 N6bed38a24b9148bfa779254b6e925fa8 rdf:first sg:person.01157147053.12
80 rdf:rest rdf:nil
81 N7a75911c51914048b0acb1b73af04bb1 rdf:first sg:person.01231773263.15
82 rdf:rest Nbeda035f2cd54ceb9fe003a2891a33e7
83 N7b13ff755be94068a813131b0ea36279 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Multivariate Analysis
85 rdf:type schema:DefinedTerm
86 N80713f7dbb09454cb338f49648faac04 schema:name pubmed_id
87 schema:value 23563602
88 rdf:type schema:PropertyValue
89 N8650bf3da1494e1bb710c809b520ed24 schema:name readcube_id
90 schema:value 30e9e64b33e24edfa287cfa9e7a09771940b332cba5a13430f223e129bfb15ac
91 rdf:type schema:PropertyValue
92 N87f06a2ba728427c80cb69858053429b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Myometrium
94 rdf:type schema:DefinedTerm
95 N8a3980ed79c24b91971a88ac3177eb4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Aged
97 rdf:type schema:DefinedTerm
98 Na05735794e654e6ba0c3f7734552816a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Retrospective Studies
100 rdf:type schema:DefinedTerm
101 Na601a094049d4491b5cb46535f9d63fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Aged, 80 and over
103 rdf:type schema:DefinedTerm
104 Nafd0f8a0ed1f4c57af65ff731426bc58 rdf:first sg:person.014147111127.03
105 rdf:rest N55f20c311e634e079cf1818e6cdaa850
106 Nb0614045939740f193ad71184bed7b8c schema:name dimensions_id
107 schema:value pub.1010266994
108 rdf:type schema:PropertyValue
109 Nb7e6cb679be549dcbc7137504c319584 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Reproducibility of Results
111 rdf:type schema:DefinedTerm
112 Nb95d4b90fc4c4749b0cf660c26e8b1db schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nb9ab8ae2240b44c7bfe7ff8fa6918f6f rdf:first sg:person.01166567564.74
115 rdf:rest N6bed38a24b9148bfa779254b6e925fa8
116 Nbeda035f2cd54ceb9fe003a2891a33e7 rdf:first sg:person.01357207647.14
117 rdf:rest N187cb878e7b24a5bbb9e055f5b1765eb
118 Nc2cb24546bb346b8920f0388e6db0a69 schema:issueNumber 8
119 rdf:type schema:PublicationIssue
120 Nc4282a926e1d4cf8ac7f5facc9d0113d schema:volumeNumber 23
121 rdf:type schema:PublicationVolume
122 Ncf234bff1bc24b37915167f23c301bab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Observer Variation
124 rdf:type schema:DefinedTerm
125 Ne108feadf1884bddb34f17e36c68909d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Magnetic Resonance Imaging
127 rdf:type schema:DefinedTerm
128 Ne1f16f6aa3b04c369ea9fb31d9ba0ec3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Leiomyoma
130 rdf:type schema:DefinedTerm
131 Ne47270cc5aec428aa03eb8b79af6b0e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Odds Ratio
133 rdf:type schema:DefinedTerm
134 Ne6c1b779c6e94329aecb304b73889616 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Female
136 rdf:type schema:DefinedTerm
137 Ne8d4f2368a7f436b933780280665cc9f schema:name nlm_unique_id
138 schema:value 9114774
139 rdf:type schema:PropertyValue
140 Nec48a70c58714a948d667ef8012c1243 schema:name doi
141 schema:value 10.1007/s00330-013-2819-9
142 rdf:type schema:PropertyValue
143 Nf7c94485f89d46c4bd8a7e54ac54c779 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Diffusion
145 rdf:type schema:DefinedTerm
146 Nff392f0028434a928a8ff041467d018d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Middle Aged
148 rdf:type schema:DefinedTerm
149 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
150 schema:name Medical and Health Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
153 schema:name Clinical Sciences
154 rdf:type schema:DefinedTerm
155 sg:journal.1289120 schema:issn 0938-7994
156 1432-1084
157 schema:name European Radiology
158 rdf:type schema:Periodical
159 sg:person.01101754741.17 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
160 schema:familyName Rouzier
161 schema:givenName Roman
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17
163 rdf:type schema:Person
164 sg:person.01157147053.12 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
165 schema:familyName Bazot
166 schema:givenName Marc
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157147053.12
168 rdf:type schema:Person
169 sg:person.01166567564.74 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
170 schema:familyName Daraï
171 schema:givenName Emile
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74
173 rdf:type schema:Person
174 sg:person.01231773263.15 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
175 schema:familyName Thomassin-Naggara
176 schema:givenName Isabelle
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231773263.15
178 rdf:type schema:Person
179 sg:person.01357207647.14 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
180 schema:familyName Dechoux
181 schema:givenName Sophie
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357207647.14
183 rdf:type schema:Person
184 sg:person.014147111127.03 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
185 schema:familyName Morel
186 schema:givenName Audrey
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147111127.03
188 rdf:type schema:Person
189 sg:person.0633603547.76 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
190 schema:familyName Bonneau
191 schema:givenName Claire
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633603547.76
193 rdf:type schema:Person
194 sg:person.0721242617.65 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
195 schema:familyName Carette
196 schema:givenName Marie-France
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721242617.65
198 rdf:type schema:Person
199 sg:pub.10.1007/s00330-007-0787-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034499594
200 https://doi.org/10.1007/s00330-007-0787-7
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00330-009-1299-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040490388
203 https://doi.org/10.1007/s00330-009-1299-4
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00330-009-1471-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051719875
206 https://doi.org/10.1007/s00330-009-1471-x
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/sim.2154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638199
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.bpobgyn.2011.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028859385
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.bpobgyn.2011.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052337256
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ejogrb.2012.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000489212
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.jvir.2011.01.458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045533614
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.mric.2008.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043268862
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1148/radiographics.19.5.g99se131179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074522200
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1148/radiographics.19.suppl_1.g99oc04s131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074533080
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1148/rg.25si055510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077127876
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1148/rg.326125517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078634184
227 rdf:type schema:CreativeWork
228 https://doi.org/10.2214/ajr.177.6.1771307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069324393
229 rdf:type schema:CreativeWork
230 https://doi.org/10.3109/01443615.2011.644357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034866532
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.413483.9 schema:alternateName Tenon Hospital
233 schema:name Department of Gynecology-Obstetrics, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris and Université Pierre et Marie Curie, Paris, France
234 Department of Radiology, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris and Université Pierre et Marie Curie, Paris, France
235 Service de Radiologie, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...