Prospectively ECG-triggered sequential dual-source coronary CT angiography in patients with atrial fibrillation: comparison with retrospectively ECG-gated helical CT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07

AUTHORS

Lei Xu, Lin Yang, Zhaoqi Zhang, Yining Wang, Zhengyu Jin, Longjiang Zhang, Guangming Lu

ABSTRACT

OBJECTIVE: To investigate the feasibility of applying prospectively ECG-triggered sequential coronary CT angiography (CCTA) to patients with atrial fibrillation (AF) and evaluate the image quality and radiation dose compared with a retrospectively ECG-gated helical protocol. METHODS: 100 patients with persistent AF were enrolled. Fifty patients were randomly assigned to a prospective protocol and the other patients to a retrospective protocol using a second-generation dual-source CT (DS-CT). Image quality was evaluated using a four-point grading scale (1 = excellent, 2 = good, 3 = moderate, 4 = poor) by two reviewers on a per-segment basis. The coronary artery segments were considered non-diagnostic with a quality score of 4. The radiation dose was evaluated. RESULTS: Diagnostic segment rate in the prospective group was 99.4 % (642/646 segments), while that in the retrospective group was 96.5 % (604/626 segments) (P < 0.001). Effective dose was 4.29 ± 1.86 and 11.95 ± 5.34 mSv for each of the two protocols (P < 0.001), which was a 64 % reduction in the radiation dose for prospective sequential imaging compared with retrospective helical imaging. CONCLUSION: In AF patients, prospectively ECG-triggered sequential CCTA is feasible using second-generation DS-CT and can decrease >60 % radiation exposure compared with retrospectively ECG-gated helical imaging while improving diagnostic image quality. KEY POINTS: • Coronary computed tomographic angiography (CCTA) can be difficult in patients with arrhythmias. • Prospectively ECG-triggered sequential CCTA is feasible in patients with atrial fibrillation. • Prospective sequential imaging can improve quality compared with retrospective analysis. • Prospective sequential imaging decreases radiation exposure by 64 % compared with retrospective mode. More... »

PAGES

1822-1828

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-013-2793-2

DOI

http://dx.doi.org/10.1007/s00330-013-2793-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031396966

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23645328


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atrial Fibrillation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac-Gated Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Spiral Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lei", 
        "id": "sg:person.0713154075.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Lin", 
        "id": "sg:person.0576725475.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576725475.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhaoqi", 
        "id": "sg:person.014030237157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yining", 
        "id": "sg:person.01015374302.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015374302.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Zhengyu", 
        "id": "sg:person.012317507307.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317507307.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Longjiang", 
        "id": "sg:person.01136427710.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136427710.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Guangming", 
        "id": "sg:person.0671033341.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671033341.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1056/nejmra072149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001923893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002160027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002512-200219110-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011505105", 
          "https://doi.org/10.2165/00002512-200219110-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002512-200219110-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011505105", 
          "https://doi.org/10.2165/00002512-200219110-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181948b05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013344559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181948b05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013344559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2006.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014454875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2008.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014678461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2472070906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016603234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31806907d0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019157943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31806907d0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019157943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2482072192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024935051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1222-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025460192", 
          "https://doi.org/10.1007/s00330-008-1222-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1222-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025460192", 
          "https://doi.org/10.1007/s00330-008-1222-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(02)07748-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026249774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0806576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032035217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483072032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032386157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-0041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033021022", 
          "https://doi.org/10.1007/s00330-005-0041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-0041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033021022", 
          "https://doi.org/10.1007/s00330-005-0041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2009.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033430441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483072098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034885088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2012.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035075921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.298.3.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2008.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039149018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2008.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044209235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2011.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047676352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2453070094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050231496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.106.177292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052097088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2442061218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053343799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.184.5.01841413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "OBJECTIVE: To investigate the feasibility of applying prospectively ECG-triggered sequential coronary CT angiography (CCTA) to patients with atrial fibrillation (AF) and evaluate the image quality and radiation dose compared with a retrospectively ECG-gated helical protocol.\nMETHODS: 100 patients with persistent AF were enrolled. Fifty patients were randomly assigned to a prospective protocol and the other patients to a retrospective protocol using a second-generation dual-source CT (DS-CT). Image quality was evaluated using a four-point grading scale (1 = excellent, 2 = good, 3 = moderate, 4 = poor) by two reviewers on a per-segment basis. The coronary artery segments were considered non-diagnostic with a quality score of 4. The radiation dose was evaluated.\nRESULTS: Diagnostic segment rate in the prospective group was 99.4 % (642/646 segments), while that in the retrospective group was 96.5 % (604/626 segments) (P\u2009<\u20090.001). Effective dose was 4.29\u2009\u00b1\u20091.86 and 11.95\u2009\u00b1\u20095.34 mSv for each of the two protocols (P\u2009<\u20090.001), which was a 64 % reduction in the radiation dose for prospective sequential imaging compared with retrospective helical imaging.\nCONCLUSION: In AF patients, prospectively ECG-triggered sequential CCTA is feasible using second-generation DS-CT and can decrease >60 % radiation exposure compared with retrospectively ECG-gated helical imaging while improving diagnostic image quality.\nKEY POINTS: \u2022 Coronary computed tomographic angiography (CCTA) can be difficult in patients with arrhythmias. \u2022 Prospectively ECG-triggered sequential CCTA is feasible in patients with atrial fibrillation. \u2022 Prospective sequential imaging can improve quality compared with retrospective analysis. \u2022 Prospective sequential imaging decreases radiation exposure by 64 % compared with retrospective mode.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-013-2793-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Prospectively ECG-triggered sequential dual-source coronary CT angiography in patients with atrial fibrillation: comparison with retrospectively ECG-gated helical CT", 
    "pagination": "1822-1828", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "95918d66e0821d59274c6c0ae875ac4ebf979a935888c4c39c51254acc7dae06"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23645328"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-013-2793-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031396966"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-013-2793-2", 
      "https://app.dimensions.ai/details/publication/pub.1031396966"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-013-2793-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2793-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2793-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2793-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2793-2'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      72 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-013-2793-2 schema:about N049f281971794b5c8359285642be4d62
2 N1419233deeed40e9a80322ff14b52e63
3 N334301cfe4674538a3b2903d4cb82aab
4 N3e728966ed5c4a37a2df56ae8c302146
5 N4ff12ea580f84e01bfc09fa794386296
6 N62fd27981d03433388195814e411807b
7 N77cd995ae11f4dacb2cb4b6168c2beb0
8 N820faa403ae9434384f549bb687dba95
9 N8d75f2de31c44855935d679f82cf005d
10 N8f78cfe549034232a0b6f91ba7f29d20
11 N97c1f9f9f06a45fdac4ecd8eee3b3b30
12 Naddcf3970c6148c78460033a95e9368f
13 Nbf8d3920a8e24a1694ccdaf217e7947e
14 Nc0d64fc3f12f44e8a2dd788e3918b519
15 Neee9a26f7b774e1a8affefd9683d2a84
16 Nfbc44377846040979ee133d3b231e89c
17 anzsrc-for:11
18 anzsrc-for:1102
19 schema:author Necf7b8ea57df4732bc0948f1ddd1c582
20 schema:citation sg:pub.10.1007/s00330-005-0041-0
21 sg:pub.10.1007/s00330-008-1222-4
22 sg:pub.10.2165/00002512-200219110-00002
23 https://doi.org/10.1001/jama.298.3.317
24 https://doi.org/10.1016/j.ejrad.2006.06.009
25 https://doi.org/10.1016/j.ejrad.2008.09.011
26 https://doi.org/10.1016/j.jacc.2005.05.056
27 https://doi.org/10.1016/j.jacc.2008.07.031
28 https://doi.org/10.1016/j.jacc.2008.09.017
29 https://doi.org/10.1016/j.jcct.2009.01.001
30 https://doi.org/10.1016/j.jcct.2011.06.001
31 https://doi.org/10.1016/j.jcct.2012.04.003
32 https://doi.org/10.1016/s0140-6736(02)07748-6
33 https://doi.org/10.1056/nejmoa0806576
34 https://doi.org/10.1056/nejmra072149
35 https://doi.org/10.1097/rli.0b013e31806907d0
36 https://doi.org/10.1097/rli.0b013e3181948b05
37 https://doi.org/10.1148/radiol.2442061218
38 https://doi.org/10.1148/radiol.2453070094
39 https://doi.org/10.1148/radiol.2472070906
40 https://doi.org/10.1148/radiol.2482072192
41 https://doi.org/10.1148/radiol.2483072032
42 https://doi.org/10.1148/radiol.2483072098
43 https://doi.org/10.1161/circulationaha.106.177292
44 https://doi.org/10.2214/ajr.08.2012
45 https://doi.org/10.2214/ajr.184.5.01841413
46 https://doi.org/10.2307/2529310
47 schema:datePublished 2013-07
48 schema:datePublishedReg 2013-07-01
49 schema:description OBJECTIVE: To investigate the feasibility of applying prospectively ECG-triggered sequential coronary CT angiography (CCTA) to patients with atrial fibrillation (AF) and evaluate the image quality and radiation dose compared with a retrospectively ECG-gated helical protocol. METHODS: 100 patients with persistent AF were enrolled. Fifty patients were randomly assigned to a prospective protocol and the other patients to a retrospective protocol using a second-generation dual-source CT (DS-CT). Image quality was evaluated using a four-point grading scale (1 = excellent, 2 = good, 3 = moderate, 4 = poor) by two reviewers on a per-segment basis. The coronary artery segments were considered non-diagnostic with a quality score of 4. The radiation dose was evaluated. RESULTS: Diagnostic segment rate in the prospective group was 99.4 % (642/646 segments), while that in the retrospective group was 96.5 % (604/626 segments) (P < 0.001). Effective dose was 4.29 ± 1.86 and 11.95 ± 5.34 mSv for each of the two protocols (P < 0.001), which was a 64 % reduction in the radiation dose for prospective sequential imaging compared with retrospective helical imaging. CONCLUSION: In AF patients, prospectively ECG-triggered sequential CCTA is feasible using second-generation DS-CT and can decrease >60 % radiation exposure compared with retrospectively ECG-gated helical imaging while improving diagnostic image quality. KEY POINTS: • Coronary computed tomographic angiography (CCTA) can be difficult in patients with arrhythmias. • Prospectively ECG-triggered sequential CCTA is feasible in patients with atrial fibrillation. • Prospective sequential imaging can improve quality compared with retrospective analysis. • Prospective sequential imaging decreases radiation exposure by 64 % compared with retrospective mode.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N0b96987e6f1846d59f48353790bb3e17
54 N746379358b814b05ae0e8f715c068889
55 sg:journal.1289120
56 schema:name Prospectively ECG-triggered sequential dual-source coronary CT angiography in patients with atrial fibrillation: comparison with retrospectively ECG-gated helical CT
57 schema:pagination 1822-1828
58 schema:productId N0f92093d54964bd28e5a22b1e8bf6c10
59 N853a24a1896d4ce8a668c2403947c776
60 Na425c24048214c1f95dafbec1214bd8c
61 Nb4bd0cde02e041bb9ccfba8e013e9387
62 Ncf32d40144124ca29278c9eae5a4a702
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031396966
64 https://doi.org/10.1007/s00330-013-2793-2
65 schema:sdDatePublished 2019-04-10T20:47
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nedbe511c86464f3286c136b80e3081ad
68 schema:url http://link.springer.com/10.1007%2Fs00330-013-2793-2
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N049f281971794b5c8359285642be4d62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Female
74 rdf:type schema:DefinedTerm
75 N0b96987e6f1846d59f48353790bb3e17 schema:volumeNumber 23
76 rdf:type schema:PublicationVolume
77 N0f92093d54964bd28e5a22b1e8bf6c10 schema:name doi
78 schema:value 10.1007/s00330-013-2793-2
79 rdf:type schema:PropertyValue
80 N1419233deeed40e9a80322ff14b52e63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Atrial Fibrillation
82 rdf:type schema:DefinedTerm
83 N334301cfe4674538a3b2903d4cb82aab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Coronary Angiography
85 rdf:type schema:DefinedTerm
86 N3e728966ed5c4a37a2df56ae8c302146 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Tomography, Spiral Computed
88 rdf:type schema:DefinedTerm
89 N4ff12ea580f84e01bfc09fa794386296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Image Processing, Computer-Assisted
91 rdf:type schema:DefinedTerm
92 N571b00e4fa7b4be7ae1f7b87bdcc77f9 schema:name Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
93 rdf:type schema:Organization
94 N62fd27981d03433388195814e411807b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Electrocardiography
96 rdf:type schema:DefinedTerm
97 N68050a0db66a4ad1a7f3509081e3b17b rdf:first sg:person.0576725475.78
98 rdf:rest Ncb903480f70240e5b0cd2e887a5349c9
99 N704e867f519142039bbeaf888ef3b032 rdf:first sg:person.01136427710.28
100 rdf:rest Nf9fd3d659b874b6d8fce10fc9a379f58
101 N746379358b814b05ae0e8f715c068889 schema:issueNumber 7
102 rdf:type schema:PublicationIssue
103 N77cd995ae11f4dacb2cb4b6168c2beb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Adult
105 rdf:type schema:DefinedTerm
106 N820faa403ae9434384f549bb687dba95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Tomography, X-Ray Computed
108 rdf:type schema:DefinedTerm
109 N853a24a1896d4ce8a668c2403947c776 schema:name nlm_unique_id
110 schema:value 9114774
111 rdf:type schema:PropertyValue
112 N8d75f2de31c44855935d679f82cf005d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Aged
114 rdf:type schema:DefinedTerm
115 N8f78cfe549034232a0b6f91ba7f29d20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Middle Aged
117 rdf:type schema:DefinedTerm
118 N97c1f9f9f06a45fdac4ecd8eee3b3b30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Retrospective Studies
120 rdf:type schema:DefinedTerm
121 Na425c24048214c1f95dafbec1214bd8c schema:name dimensions_id
122 schema:value pub.1031396966
123 rdf:type schema:PropertyValue
124 Naddcf3970c6148c78460033a95e9368f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 Nb27ff97a293f4b36a5cfcd96773c01f5 schema:name Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, China
128 rdf:type schema:Organization
129 Nb4bd0cde02e041bb9ccfba8e013e9387 schema:name pubmed_id
130 schema:value 23645328
131 rdf:type schema:PropertyValue
132 Nb4e8d7690d5549d6a49662f4f9ee9219 schema:name Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
133 rdf:type schema:Organization
134 Nbf8d3920a8e24a1694ccdaf217e7947e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Cardiac-Gated Imaging Techniques
136 rdf:type schema:DefinedTerm
137 Nc0d64fc3f12f44e8a2dd788e3918b519 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Prospective Studies
139 rdf:type schema:DefinedTerm
140 Ncb903480f70240e5b0cd2e887a5349c9 rdf:first sg:person.014030237157.28
141 rdf:rest Nfc6f9e281fa54cbdb2c31b77274841b8
142 Ncf32d40144124ca29278c9eae5a4a702 schema:name readcube_id
143 schema:value 95918d66e0821d59274c6c0ae875ac4ebf979a935888c4c39c51254acc7dae06
144 rdf:type schema:PropertyValue
145 Necf7b8ea57df4732bc0948f1ddd1c582 rdf:first sg:person.0713154075.07
146 rdf:rest N68050a0db66a4ad1a7f3509081e3b17b
147 Nedbe511c86464f3286c136b80e3081ad schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Neee9a26f7b774e1a8affefd9683d2a84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Aged, 80 and over
151 rdf:type schema:DefinedTerm
152 Nf9c8aec74a284c7dad434354beb6b415 rdf:first sg:person.012317507307.41
153 rdf:rest N704e867f519142039bbeaf888ef3b032
154 Nf9fd3d659b874b6d8fce10fc9a379f58 rdf:first sg:person.0671033341.01
155 rdf:rest rdf:nil
156 Nfbc44377846040979ee133d3b231e89c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Male
158 rdf:type schema:DefinedTerm
159 Nfc6f9e281fa54cbdb2c31b77274841b8 rdf:first sg:person.01015374302.34
160 rdf:rest Nf9c8aec74a284c7dad434354beb6b415
161 Nfe8aba408c7b4bb795382c43e5071d57 schema:name Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu, China
162 rdf:type schema:Organization
163 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
164 schema:name Medical and Health Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
167 schema:name Cardiorespiratory Medicine and Haematology
168 rdf:type schema:DefinedTerm
169 sg:journal.1289120 schema:issn 0938-7994
170 1432-1084
171 schema:name European Radiology
172 rdf:type schema:Periodical
173 sg:person.01015374302.34 schema:affiliation Nb4e8d7690d5549d6a49662f4f9ee9219
174 schema:familyName Wang
175 schema:givenName Yining
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015374302.34
177 rdf:type schema:Person
178 sg:person.01136427710.28 schema:affiliation Nb27ff97a293f4b36a5cfcd96773c01f5
179 schema:familyName Zhang
180 schema:givenName Longjiang
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136427710.28
182 rdf:type schema:Person
183 sg:person.012317507307.41 schema:affiliation N571b00e4fa7b4be7ae1f7b87bdcc77f9
184 schema:familyName Jin
185 schema:givenName Zhengyu
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012317507307.41
187 rdf:type schema:Person
188 sg:person.014030237157.28 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
189 schema:familyName Zhang
190 schema:givenName Zhaoqi
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28
192 rdf:type schema:Person
193 sg:person.0576725475.78 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
194 schema:familyName Yang
195 schema:givenName Lin
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576725475.78
197 rdf:type schema:Person
198 sg:person.0671033341.01 schema:affiliation Nfe8aba408c7b4bb795382c43e5071d57
199 schema:familyName Lu
200 schema:givenName Guangming
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671033341.01
202 rdf:type schema:Person
203 sg:person.0713154075.07 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
204 schema:familyName Xu
205 schema:givenName Lei
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07
207 rdf:type schema:Person
208 sg:pub.10.1007/s00330-005-0041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033021022
209 https://doi.org/10.1007/s00330-005-0041-0
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s00330-008-1222-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025460192
212 https://doi.org/10.1007/s00330-008-1222-4
213 rdf:type schema:CreativeWork
214 sg:pub.10.2165/00002512-200219110-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011505105
215 https://doi.org/10.2165/00002512-200219110-00002
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1001/jama.298.3.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295152
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.ejrad.2006.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014454875
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.ejrad.2008.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039149018
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.jacc.2005.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002160027
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.jacc.2008.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044209235
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.jacc.2008.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014678461
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.jcct.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033430441
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.jcct.2011.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047676352
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.jcct.2012.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035075921
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0140-6736(02)07748-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026249774
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1056/nejmoa0806576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032035217
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1056/nejmra072149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001923893
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1097/rli.0b013e31806907d0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019157943
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1097/rli.0b013e3181948b05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013344559
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1148/radiol.2442061218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053343799
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1148/radiol.2453070094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050231496
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1148/radiol.2472070906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016603234
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1148/radiol.2482072192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024935051
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1148/radiol.2483072032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032386157
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1148/radiol.2483072098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034885088
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1161/circulationaha.106.177292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052097088
258 rdf:type schema:CreativeWork
259 https://doi.org/10.2214/ajr.08.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299923
260 rdf:type schema:CreativeWork
261 https://doi.org/10.2214/ajr.184.5.01841413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326862
262 rdf:type schema:CreativeWork
263 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
266 schema:name Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...