Diffusion-weighted and T2-weighted MR imaging for colorectal liver metastases detection in a rat model at 7 T: a comparative study ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

Mathilde Wagner, Léon Maggiori, Maxime Ronot, Valérie Paradis, Valérie Vilgrain, Yves Panis, Bernard E. Van Beers

ABSTRACT

OBJECTIVES: To compare diffusion-weighted (DW) and T2-weighted MR imaging in detecting colorectal liver metastases in a rat model, using histological examination as a reference method. METHODS: Eighteen rats had four liver injections of colon cancer cells. MR examinations at 7 T included FSE-T2-weighted imaging and SE-DW MR imaging (b = 0, 20 and 150 s/mm(2)) and were analysed by two independent readers. Histological examination was performed on 0.4-mm slices. McNemar's test was used to compare the sensitivities and the Wilcoxon matched pairs test to compare the average number of false-positives per rat. RESULTS: One hundred and sixty-six liver metastases were identified on histological examination. The sensitivity in detecting liver metastases was significantly higher on DW MR than on T2-weighted images (99/166 (60 %) (reader 1) and 92/166 (55 %) (reader 2) versus 77/166 (46 %), P ≤ 0.001), without an increase in false-positives per rat (P = 0.773/P = 0.850). After stratification according to metastasis diameter, DW MR imaging had a significantly higher sensitivity than T2-weighted imaging only for metastases with a diameter (0.6-1.2 mm) similar to that of the spatial resolution of MR imaging in the current study. CONCLUSIONS: This MR study with histological correlations shows the higher sensitivity of DW relative to T2-weighted imaging at 7 T for detecting liver metastases, especially small ones. KEY POINTS: • Diffusion weighted (DW) sequences are increasingly used in magnetic resonance imaging (MRI). • DW has higher sensitivity for liver metastases than T2-weighted imaging at 7 T. • This increase in sensitivity is especially marked for small liver metastasis detection. • This higher sensitivity is confirmed in an animal model with histological correlation. • DW imaging has the potential for earlier diagnosis of small liver metastases. More... »

PAGES

2156-2164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-013-2789-y

DOI

http://dx.doi.org/10.1007/s00330-013-2789-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053325733

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23455763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Positive Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratory of Physiological and Molecular Imaging of the Abdomen (IPMA) and Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique- H\u00f4pitaux de Paris, 100 Boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Mathilde", 
        "id": "sg:person.01034526661.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Colorectal Surgery, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique-H\u00f4pitaux de Paris, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maggiori", 
        "givenName": "L\u00e9on", 
        "id": "sg:person.0604634762.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604634762.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Physiological and Molecular Imaging of the Abdomen (IPMA) and Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique- H\u00f4pitaux de Paris, 100 Boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronot", 
        "givenName": "Maxime", 
        "id": "sg:person.01025534354.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Pathology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique-H\u00f4pitaux de Paris, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paradis", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.01165415672.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165415672.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Physiological and Molecular Imaging of the Abdomen (IPMA) and Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique- H\u00f4pitaux de Paris, 100 Boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilgrain", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.0761705775.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Colorectal Surgery, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique-H\u00f4pitaux de Paris, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panis", 
        "givenName": "Yves", 
        "id": "sg:person.01243543353.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243543353.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Physiological and Molecular Imaging of the Abdomen (IPMA) and Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique- H\u00f4pitaux de Paris, 100 Boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Beers", 
        "givenName": "Bernard E.", 
        "id": "sg:person.01040234232.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040234232.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006052862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000217629.94941.cf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008912065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000217629.94941.cf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008912065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1590-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008951468", 
          "https://doi.org/10.1007/s00330-009-1590-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1590-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008951468", 
          "https://doi.org/10.1007/s00330-009-1590-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1590-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008951468", 
          "https://doi.org/10.1007/s00330-009-1590-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011403732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2011.01.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014840084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1977-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020839102", 
          "https://doi.org/10.1007/s00330-010-1977-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31816200b5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030099124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31816200b5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030099124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030144577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2519-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032755980", 
          "https://doi.org/10.1007/s00330-012-2519-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.050090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038027447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.050090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038027447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(08)60455-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038419533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200206000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041943148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200206000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041943148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2463070432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042428509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-010-1409-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044879140", 
          "https://doi.org/10.1245/s10434-010-1409-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2008.19.9273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047377641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.282.11.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048594963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051454600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199805000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/33156643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064569106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.3279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4329/wjr.v1.i1.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072524511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075252494", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2383041384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077192078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b4539b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077952929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2310/7290.2011.00035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078541171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2310/7290.2011.00035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078541171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.189.1.8396785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082789440"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08", 
    "datePublishedReg": "2013-08-01", 
    "description": "OBJECTIVES: To compare diffusion-weighted (DW) and T2-weighted MR imaging in detecting colorectal liver metastases in a rat model, using histological examination as a reference method.\nMETHODS: Eighteen rats had four liver injections of colon cancer cells. MR examinations at 7\u00a0T included FSE-T2-weighted imaging and SE-DW MR imaging (b\u2009=\u20090, 20 and 150\u00a0s/mm(2)) and were analysed by two independent readers. Histological examination was performed on 0.4-mm slices. McNemar's test was used to compare the sensitivities and the Wilcoxon matched pairs test to compare the average number of false-positives per rat.\nRESULTS: One hundred and sixty-six liver metastases were identified on histological examination. The sensitivity in detecting liver metastases was significantly higher on DW MR than on T2-weighted images (99/166 (60\u00a0%) (reader 1) and 92/166 (55\u00a0%) (reader 2) versus 77/166 (46\u00a0%), P\u2009\u2264\u20090.001), without an increase in false-positives per rat (P\u2009=\u20090.773/P\u2009=\u20090.850). After stratification according to metastasis diameter, DW MR imaging had a significantly higher sensitivity than T2-weighted imaging only for metastases with a diameter (0.6-1.2\u00a0mm) similar to that of the spatial resolution of MR imaging in the current study.\nCONCLUSIONS: This MR study with histological correlations shows the higher sensitivity of DW relative to T2-weighted imaging at 7\u00a0T for detecting liver metastases, especially small ones.\nKEY POINTS: \u2022 Diffusion weighted (DW) sequences are increasingly used in magnetic resonance imaging (MRI). \u2022 DW has higher sensitivity for liver metastases than T2-weighted imaging at 7\u00a0T. \u2022 This increase in sensitivity is especially marked for small liver metastasis detection. \u2022 This higher sensitivity is confirmed in an animal model with histological correlation. \u2022 DW imaging has the potential for earlier diagnosis of small liver metastases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-013-2789-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Diffusion-weighted and T2-weighted MR imaging for colorectal liver metastases detection in a rat model at 7 T: a comparative study using histological examination as reference", 
    "pagination": "2156-2164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fdfff290f53a313bb198219d821efc74508dd7baaa6df09f3f80523767688056"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23455763"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-013-2789-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053325733"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-013-2789-y", 
      "https://app.dimensions.ai/details/publication/pub.1053325733"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000483.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00330-013-2789-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2789-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2789-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2789-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-2789-y'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      71 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-013-2789-y schema:about N016a33daa99b41abb4abcbcd294704cd
2 N1018d8dd9b054fa89fdb78380bcd5f27
3 N1df72976de3a44b59f302d77c02b789c
4 N49c80395d9004f568d49c6ab6eae41d1
5 N539a1d14a89342c2ac086b726d22d596
6 N76a47d4bab174883809d20b373985d70
7 N7774519df7ec4c49adc625fe2f538527
8 N79b347b6a5294682a3a638c9db7bf697
9 N8eb1e49a3bb54b4cb5ae85dce61424ea
10 N8f49be0fc6984d80a648f6f7674dc353
11 N9b14a4fcce2040008d34f2a12c280062
12 N9cc37f3114c34c7cbb1efb4d6e32fa09
13 Nb1e2d17cea574e118605183a2d3e71e6
14 Nd6545886606a486daf3aac66ce90db28
15 Nf36041f9d8854944ac464233a0c5ecb3
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author Nbfcbc8e94a9e4a15be337011f8203ba6
19 schema:citation sg:pub.10.1007/s00330-009-1590-4
20 sg:pub.10.1007/s00330-010-1977-2
21 sg:pub.10.1007/s00330-012-2519-x
22 sg:pub.10.1245/s10434-010-1409-1
23 https://app.dimensions.ai/details/publication/pub.1075252494
24 https://doi.org/10.1001/jama.282.11.1061
25 https://doi.org/10.1002/jmri.20682
26 https://doi.org/10.1016/j.ejrad.2010.06.027
27 https://doi.org/10.1016/j.ejrad.2011.01.072
28 https://doi.org/10.1016/s0140-6736(08)60455-9
29 https://doi.org/10.1097/00000658-200206000-00002
30 https://doi.org/10.1097/00004728-199805000-00005
31 https://doi.org/10.1097/01.sla.0000217629.94941.cf
32 https://doi.org/10.1097/rli.0b013e31816200b5
33 https://doi.org/10.1097/sla.0b013e3181b4539b
34 https://doi.org/10.1148/radiol.09090021
35 https://doi.org/10.1148/radiol.10100729
36 https://doi.org/10.1148/radiol.2383041384
37 https://doi.org/10.1148/radiol.2463070432
38 https://doi.org/10.1148/radiology.189.1.8396785
39 https://doi.org/10.1200/jco.2008.19.9273
40 https://doi.org/10.1259/bjr/33156643
41 https://doi.org/10.1503/cmaj.050090
42 https://doi.org/10.2214/ajr.05.0932
43 https://doi.org/10.2214/ajr.07.3279
44 https://doi.org/10.2310/7290.2011.00035
45 https://doi.org/10.4329/wjr.v1.i1.72
46 schema:datePublished 2013-08
47 schema:datePublishedReg 2013-08-01
48 schema:description OBJECTIVES: To compare diffusion-weighted (DW) and T2-weighted MR imaging in detecting colorectal liver metastases in a rat model, using histological examination as a reference method. METHODS: Eighteen rats had four liver injections of colon cancer cells. MR examinations at 7 T included FSE-T2-weighted imaging and SE-DW MR imaging (b = 0, 20 and 150 s/mm(2)) and were analysed by two independent readers. Histological examination was performed on 0.4-mm slices. McNemar's test was used to compare the sensitivities and the Wilcoxon matched pairs test to compare the average number of false-positives per rat. RESULTS: One hundred and sixty-six liver metastases were identified on histological examination. The sensitivity in detecting liver metastases was significantly higher on DW MR than on T2-weighted images (99/166 (60 %) (reader 1) and 92/166 (55 %) (reader 2) versus 77/166 (46 %), P ≤ 0.001), without an increase in false-positives per rat (P = 0.773/P = 0.850). After stratification according to metastasis diameter, DW MR imaging had a significantly higher sensitivity than T2-weighted imaging only for metastases with a diameter (0.6-1.2 mm) similar to that of the spatial resolution of MR imaging in the current study. CONCLUSIONS: This MR study with histological correlations shows the higher sensitivity of DW relative to T2-weighted imaging at 7 T for detecting liver metastases, especially small ones. KEY POINTS: • Diffusion weighted (DW) sequences are increasingly used in magnetic resonance imaging (MRI). • DW has higher sensitivity for liver metastases than T2-weighted imaging at 7 T. • This increase in sensitivity is especially marked for small liver metastasis detection. • This higher sensitivity is confirmed in an animal model with histological correlation. • DW imaging has the potential for earlier diagnosis of small liver metastases.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N4bed5b02ad984f4bb01a079c45a1f904
53 Nb3becac970b141db8a725f0e677b0e3a
54 sg:journal.1289120
55 schema:name Diffusion-weighted and T2-weighted MR imaging for colorectal liver metastases detection in a rat model at 7 T: a comparative study using histological examination as reference
56 schema:pagination 2156-2164
57 schema:productId N112515df5214458aaf149f4a2e8173a9
58 N3f1d59a56df84f0fac81ea6d78227418
59 Nc1b7484838f74502a30fd331df6ec0c9
60 Ndac558b92c4d46e691b99b79ad2d8295
61 Ne340b0739bcb4eec88bbb20a1c49560d
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053325733
63 https://doi.org/10.1007/s00330-013-2789-y
64 schema:sdDatePublished 2019-04-10T19:02
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Na303687e898a4538901264f1a4f59316
67 schema:url http://link.springer.com/10.1007/s00330-013-2789-y
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N016a33daa99b41abb4abcbcd294704cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Image Processing, Computer-Assisted
73 rdf:type schema:DefinedTerm
74 N094f95b47e8d464fbdd6a2e42617659c rdf:first sg:person.0761705775.52
75 rdf:rest N428ab8aea10549aa965076a4b2ebc47e
76 N1018d8dd9b054fa89fdb78380bcd5f27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name False Positive Reactions
78 rdf:type schema:DefinedTerm
79 N112515df5214458aaf149f4a2e8173a9 schema:name readcube_id
80 schema:value fdfff290f53a313bb198219d821efc74508dd7baaa6df09f3f80523767688056
81 rdf:type schema:PropertyValue
82 N117a072e63f8482788afcd5b2a3881b7 rdf:first sg:person.01040234232.35
83 rdf:rest rdf:nil
84 N1df72976de3a44b59f302d77c02b789c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Animals
86 rdf:type schema:DefinedTerm
87 N28e18b8486334625a66a48d3195f710b schema:name Department of Pathology, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
88 rdf:type schema:Organization
89 N2dfa0d3ca8584c3c8e2b0db62f040637 schema:name Laboratory of Physiological and Molecular Imaging of the Abdomen (IPMA) and Department of Radiology, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique- Hôpitaux de Paris, 100 Boulevard du Général Leclerc, 92118, Clichy Cedex, France
90 rdf:type schema:Organization
91 N2eec77e1088e455e8a6680ac4bddceae rdf:first sg:person.0604634762.30
92 rdf:rest N63cc566a7f6143a8abd1cd7ab4a352cb
93 N3f1d59a56df84f0fac81ea6d78227418 schema:name dimensions_id
94 schema:value pub.1053325733
95 rdf:type schema:PropertyValue
96 N3f3b53b503e244ad909546736148871b rdf:first sg:person.01165415672.72
97 rdf:rest N094f95b47e8d464fbdd6a2e42617659c
98 N428ab8aea10549aa965076a4b2ebc47e rdf:first sg:person.01243543353.18
99 rdf:rest N117a072e63f8482788afcd5b2a3881b7
100 N49c80395d9004f568d49c6ab6eae41d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Rats
102 rdf:type schema:DefinedTerm
103 N4bed5b02ad984f4bb01a079c45a1f904 schema:issueNumber 8
104 rdf:type schema:PublicationIssue
105 N539a1d14a89342c2ac086b726d22d596 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Colorectal Neoplasms
107 rdf:type schema:DefinedTerm
108 N63cc566a7f6143a8abd1cd7ab4a352cb rdf:first sg:person.01025534354.12
109 rdf:rest N3f3b53b503e244ad909546736148871b
110 N6cdccaafb1954b139869aec900ae12ff schema:name Laboratory of Physiological and Molecular Imaging of the Abdomen (IPMA) and Department of Radiology, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique- Hôpitaux de Paris, 100 Boulevard du Général Leclerc, 92118, Clichy Cedex, France
111 rdf:type schema:Organization
112 N76a47d4bab174883809d20b373985d70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Neoplasm Metastasis
114 rdf:type schema:DefinedTerm
115 N7774519df7ec4c49adc625fe2f538527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Image Interpretation, Computer-Assisted
117 rdf:type schema:DefinedTerm
118 N79b347b6a5294682a3a638c9db7bf697 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Diffusion Magnetic Resonance Imaging
120 rdf:type schema:DefinedTerm
121 N811bf07767fc4d2fad281a6909c8738b schema:name Laboratory of Physiological and Molecular Imaging of the Abdomen (IPMA) and Department of Radiology, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique- Hôpitaux de Paris, 100 Boulevard du Général Leclerc, 92118, Clichy Cedex, France
122 rdf:type schema:Organization
123 N8eb1e49a3bb54b4cb5ae85dce61424ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Sensitivity and Specificity
125 rdf:type schema:DefinedTerm
126 N8f49be0fc6984d80a648f6f7674dc353 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Magnetic Resonance Imaging
128 rdf:type schema:DefinedTerm
129 N9b14a4fcce2040008d34f2a12c280062 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Male
131 rdf:type schema:DefinedTerm
132 N9cc37f3114c34c7cbb1efb4d6e32fa09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cell Line, Tumor
134 rdf:type schema:DefinedTerm
135 Na303687e898a4538901264f1a4f59316 schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Nb1e2d17cea574e118605183a2d3e71e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Neoplasm Transplantation
139 rdf:type schema:DefinedTerm
140 Nb3becac970b141db8a725f0e677b0e3a schema:volumeNumber 23
141 rdf:type schema:PublicationVolume
142 Nbfcbc8e94a9e4a15be337011f8203ba6 rdf:first sg:person.01034526661.15
143 rdf:rest N2eec77e1088e455e8a6680ac4bddceae
144 Nc1b7484838f74502a30fd331df6ec0c9 schema:name doi
145 schema:value 10.1007/s00330-013-2789-y
146 rdf:type schema:PropertyValue
147 Nc43c193e1cf541f1b59e564a8ae18e85 schema:name Laboratory of Physiological and Molecular Imaging of the Abdomen (IPMA) and Department of Radiology, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique- Hôpitaux de Paris, 100 Boulevard du Général Leclerc, 92118, Clichy Cedex, France
148 rdf:type schema:Organization
149 Nd4b414f9e9df4454ae90ac9a929bfbab schema:name Department of Colorectal Surgery, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
150 rdf:type schema:Organization
151 Nd6545886606a486daf3aac66ce90db28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Liver Neoplasms
153 rdf:type schema:DefinedTerm
154 Ndac558b92c4d46e691b99b79ad2d8295 schema:name nlm_unique_id
155 schema:value 9114774
156 rdf:type schema:PropertyValue
157 Ne340b0739bcb4eec88bbb20a1c49560d schema:name pubmed_id
158 schema:value 23455763
159 rdf:type schema:PropertyValue
160 Nef110912e65b481f89d8ce03bb3389cc schema:name Department of Colorectal Surgery, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
161 rdf:type schema:Organization
162 Nf36041f9d8854944ac464233a0c5ecb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Diffusion
164 rdf:type schema:DefinedTerm
165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical and Health Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
169 schema:name Clinical Sciences
170 rdf:type schema:DefinedTerm
171 sg:journal.1289120 schema:issn 0938-7994
172 1432-1084
173 schema:name European Radiology
174 rdf:type schema:Periodical
175 sg:person.01025534354.12 schema:affiliation N811bf07767fc4d2fad281a6909c8738b
176 schema:familyName Ronot
177 schema:givenName Maxime
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12
179 rdf:type schema:Person
180 sg:person.01034526661.15 schema:affiliation N2dfa0d3ca8584c3c8e2b0db62f040637
181 schema:familyName Wagner
182 schema:givenName Mathilde
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15
184 rdf:type schema:Person
185 sg:person.01040234232.35 schema:affiliation Nc43c193e1cf541f1b59e564a8ae18e85
186 schema:familyName Van Beers
187 schema:givenName Bernard E.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040234232.35
189 rdf:type schema:Person
190 sg:person.01165415672.72 schema:affiliation N28e18b8486334625a66a48d3195f710b
191 schema:familyName Paradis
192 schema:givenName Valérie
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165415672.72
194 rdf:type schema:Person
195 sg:person.01243543353.18 schema:affiliation Nd4b414f9e9df4454ae90ac9a929bfbab
196 schema:familyName Panis
197 schema:givenName Yves
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243543353.18
199 rdf:type schema:Person
200 sg:person.0604634762.30 schema:affiliation Nef110912e65b481f89d8ce03bb3389cc
201 schema:familyName Maggiori
202 schema:givenName Léon
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604634762.30
204 rdf:type schema:Person
205 sg:person.0761705775.52 schema:affiliation N6cdccaafb1954b139869aec900ae12ff
206 schema:familyName Vilgrain
207 schema:givenName Valérie
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52
209 rdf:type schema:Person
210 sg:pub.10.1007/s00330-009-1590-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008951468
211 https://doi.org/10.1007/s00330-009-1590-4
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00330-010-1977-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020839102
214 https://doi.org/10.1007/s00330-010-1977-2
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s00330-012-2519-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032755980
217 https://doi.org/10.1007/s00330-012-2519-x
218 rdf:type schema:CreativeWork
219 sg:pub.10.1245/s10434-010-1409-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044879140
220 https://doi.org/10.1245/s10434-010-1409-1
221 rdf:type schema:CreativeWork
222 https://app.dimensions.ai/details/publication/pub.1075252494 schema:CreativeWork
223 https://doi.org/10.1001/jama.282.11.1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048594963
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1002/jmri.20682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030144577
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.ejrad.2010.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006052862
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.ejrad.2011.01.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014840084
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/s0140-6736(08)60455-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038419533
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1097/00000658-200206000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041943148
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1097/00004728-199805000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060189416
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1097/01.sla.0000217629.94941.cf schema:sameAs https://app.dimensions.ai/details/publication/pub.1008912065
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1097/rli.0b013e31816200b5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030099124
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1097/sla.0b013e3181b4539b schema:sameAs https://app.dimensions.ai/details/publication/pub.1077952929
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1148/radiol.09090021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051454600
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1148/radiol.10100729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011403732
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1148/radiol.2383041384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077192078
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1148/radiol.2463070432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042428509
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1148/radiology.189.1.8396785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082789440
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1200/jco.2008.19.9273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047377641
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1259/bjr/33156643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064569106
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1503/cmaj.050090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038027447
258 rdf:type schema:CreativeWork
259 https://doi.org/10.2214/ajr.05.0932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297731
260 rdf:type schema:CreativeWork
261 https://doi.org/10.2214/ajr.07.3279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299059
262 rdf:type schema:CreativeWork
263 https://doi.org/10.2310/7290.2011.00035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078541171
264 rdf:type schema:CreativeWork
265 https://doi.org/10.4329/wjr.v1.i1.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072524511
266 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...