Imaging of the entire cerebrospinal fluid volume with a multistation 3D SPACE MR sequence: feasibility study in patients with hydrocephalus View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06

AUTHORS

Jérôme Hodel, Alain Lebret, Eric Petit, Xavier Leclerc, Marc Zins, Alexandre Vignaud, Philippe Decq, Alain Rahmouni

ABSTRACT

OBJECTIVES: To evaluate the feasibility of imaging the entire cerebrospinal fluid (CSF) volume using the SPACE MR sequence. METHODS: The SPACE sequence encompassing the brain and spine was performed at 1.5 T in 12 healthy volunteers and 26 consecutive patients with hydrocephalus. Image contrast was estimated using difference ratios in signal intensity between CSF and its background. Segmentation of CSF was performed using geometrical features and a topological assumption of CSF shapes. Subarachnoid and ventricular CSF space volumes were assessed in volunteers and patients and linear discriminant analysis was performed. RESULTS: Image contrast was 0.94 between the CSF and the brain and 0.90 between the CSF and the spinal cord. According to the phantom study, the accuracy of CSF volume measurement was 98.5 %. A clear distinction between patients and healthy volunteers was obtained using the linear discriminant analysis. Significant linear regression was found in healthy volunteers between ventricular (Vv) and the whole subarachnoid CSF volume (Vs) with Vv = 0.083 Vs. CONCLUSIONS: Imaging of the entire CSF volume is feasible in healthy volunteers and patients with hydrocephalus. CSF volume can be obtained on a whole-body scale. This approach may be of use for the diagnosis and follow-up of patients with hydrocephalus. KEY POINTS: • MRI assessment of CSF volume is feasible in healthy volunteers/hydrocephalus patients. • CSF volume can be obtained on a whole-body scale. • The ratio of subarachnoid and ventricular CSF is constant in healthy volunteers. • CSF linear discriminant analysis can distinguish between patients and healthy volunteers. • Entire CSF volume imaging is useful for diagnosing and following hydrocephalus. More... »

PAGES

1450-1458

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-012-2732-7

DOI

http://dx.doi.org/10.1007/s00330-012-2732-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018993046

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23239062


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebrospinal Fluid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Discriminant Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrocephalus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subarachnoid Space", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Neuroradiology, H\u00f4pital Henri Mondor, Cr\u00e9teil, France", 
            "Department of Neuroradiology, H\u00f4pital Roger Salengro, Lille, France", 
            "Department of Radiology, H\u00f4pital Saint Joseph, 185, Rue Raymond Losserand, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodel", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01354370734.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354370734.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris 12 Val de Marne University", 
          "id": "https://www.grid.ac/institutes/grid.410511.0", 
          "name": [
            "Laboratoire Images Signaux et Syst\u00e8mes Intelligents, Universit\u00e9 Paris XII, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebret", 
        "givenName": "Alain", 
        "id": "sg:person.0603107317.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603107317.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris 12 Val de Marne University", 
          "id": "https://www.grid.ac/institutes/grid.410511.0", 
          "name": [
            "Laboratoire Images Signaux et Syst\u00e8mes Intelligents, Universit\u00e9 Paris XII, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petit", 
        "givenName": "Eric", 
        "id": "sg:person.01303032721.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303032721.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Roger Salengro", 
          "id": "https://www.grid.ac/institutes/grid.414293.9", 
          "name": [
            "Department of Neuroradiology, H\u00f4pital Roger Salengro, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leclerc", 
        "givenName": "Xavier", 
        "id": "sg:person.01152164361.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152164361.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Radiology, H\u00f4pital Saint Joseph, 185, Rue Raymond Losserand, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zins", 
        "givenName": "Marc", 
        "id": "sg:person.01360232034.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360232034.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Siemens Healthcare, Saint Denis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignaud", 
        "givenName": "Alexandre", 
        "id": "sg:person.01036454447.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036454447.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pitaux Universitaires Henri Mondor", 
          "id": "https://www.grid.ac/institutes/grid.412116.1", 
          "name": [
            "Department of Neurosurgery, H\u00f4pital Henri Mondor, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decq", 
        "givenName": "Philippe", 
        "id": "sg:person.01112602603.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112602603.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pitaux Universitaires Henri Mondor", 
          "id": "https://www.grid.ac/institutes/grid.412116.1", 
          "name": [
            "Department of Radiology, H\u00f4pital Henri Mondor, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahmouni", 
        "givenName": "Alain", 
        "id": "sg:person.01117353467.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117353467.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.20713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001413450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001413450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10092284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001610571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(85)90133-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004927426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2482072039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007500650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483070362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011923738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.1994.00540210046012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012369119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016893081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000185880.92346.9e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016917560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000185880.92346.9e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016917560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000185880.92346.9e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016917560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000185880.92346.9e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016917560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007632-200105150-00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017569102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007632-200105150-00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017569102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007632-200105150-00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017569102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0056195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020734805", 
          "https://doi.org/10.1007/bfb0056195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09091105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024041393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2009.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027079309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2503081017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035423615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1758-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037667174", 
          "https://doi.org/10.1007/s00330-010-1758-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1758-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037667174", 
          "https://doi.org/10.1007/s00330-010-1758-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1925-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038270732", 
          "https://doi.org/10.1007/s00330-010-1925-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.216.3.r00au37672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038778204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.906964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040764504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/01.neu.0000168185.29659.c5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041065495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/01.neu.0000168185.29659.c5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041065495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1175-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042655437", 
          "https://doi.org/10.1007/s00330-008-1175-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1175-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042655437", 
          "https://doi.org/10.1007/s00330-008-1175-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.55.2.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053226122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053349646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.217222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.3217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074686107", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083037763", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083312471", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "OBJECTIVES: To evaluate the feasibility of imaging the entire cerebrospinal fluid (CSF) volume using the SPACE MR sequence.\nMETHODS: The SPACE sequence encompassing the brain and spine was performed at 1.5 T in 12 healthy volunteers and 26 consecutive patients with hydrocephalus. Image contrast was estimated using difference ratios in signal intensity between CSF and its background. Segmentation of CSF was performed using geometrical features and a topological assumption of CSF shapes. Subarachnoid and ventricular CSF space volumes were assessed in volunteers and patients and linear discriminant analysis was performed.\nRESULTS: Image contrast was 0.94 between the CSF and the brain and 0.90 between the CSF and the spinal cord. According to the phantom study, the accuracy of CSF volume measurement was 98.5 %. A clear distinction between patients and healthy volunteers was obtained using the linear discriminant analysis. Significant linear regression was found in healthy volunteers between ventricular (Vv) and the whole subarachnoid CSF volume (Vs) with Vv = 0.083 Vs.\nCONCLUSIONS: Imaging of the entire CSF volume is feasible in healthy volunteers and patients with hydrocephalus. CSF volume can be obtained on a whole-body scale. This approach may be of use for the diagnosis and follow-up of patients with hydrocephalus.\nKEY POINTS: \u2022 MRI assessment of CSF volume is feasible in healthy volunteers/hydrocephalus patients. \u2022 CSF volume can be obtained on a whole-body scale. \u2022 The ratio of subarachnoid and ventricular CSF is constant in healthy volunteers. \u2022 CSF linear discriminant analysis can distinguish between patients and healthy volunteers. \u2022 Entire CSF volume imaging is useful for diagnosing and following hydrocephalus.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-012-2732-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Imaging of the entire cerebrospinal fluid volume with a multistation 3D SPACE MR sequence: feasibility study in patients with hydrocephalus", 
    "pagination": "1450-1458", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a7ebd2ad2559566172737c4a74cc23ff879d0bce7d1cdcf02bb1656de35e1ed"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23239062"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-012-2732-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018993046"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-012-2732-7", 
      "https://app.dimensions.ai/details/publication/pub.1018993046"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-012-2732-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2732-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2732-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2732-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2732-7'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      74 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-012-2732-7 schema:about N04fca428083c42a492146b9543d3da23
2 N17a273f7e69843189df1af7ef4051121
3 N25bc6be60799480b8d2c585707c6c703
4 N2c4ae5663ff349d4b76f4ae8b6fc92db
5 N4625ce2c792648b0954d277c12ed298e
6 N462948f322d34854a629884edfcd11c1
7 N6ebb899b6a024bf3b153540111752dd4
8 N7256aed18af14a4c90f47d01eb02d0ec
9 N82b61e41a75349cfb7795872bd1fe447
10 N9c7eb95bbe244adf8ade3732347bdf30
11 Nc56c6298958244ed9413322375c7a400
12 Nc6a80eeaaef84cdca4034559f8b49ba7
13 Ncdae8be7610341848db1d5a3f114d7ee
14 Ndc7c6739e0bc45d289a2a688ee0cefd9
15 Nde02f045e83240e8b2a8463e132e85e5
16 Ne44a5312af094b19a3f1195d11cd8c2d
17 Nee0d4a317c1f48e9812a85946ed5e90d
18 Nf40b38284b1a45c99fba2e16feb1ae81
19 anzsrc-for:11
20 anzsrc-for:1103
21 schema:author N2527d82db74e4e6dab9fce8f87c304d7
22 schema:citation sg:pub.10.1007/bfb0056195
23 sg:pub.10.1007/s00330-008-1175-7
24 sg:pub.10.1007/s00330-010-1758-y
25 sg:pub.10.1007/s00330-010-1925-1
26 https://app.dimensions.ai/details/publication/pub.1074686107
27 https://app.dimensions.ai/details/publication/pub.1083037763
28 https://app.dimensions.ai/details/publication/pub.1083312471
29 https://doi.org/10.1001/archneur.1994.00540210046012
30 https://doi.org/10.1001/archneur.55.2.169
31 https://doi.org/10.1002/jmri.20969
32 https://doi.org/10.1002/mrm.10436
33 https://doi.org/10.1002/mrm.20713
34 https://doi.org/10.1016/0734-189x(85)90133-1
35 https://doi.org/10.1016/j.mri.2009.01.012
36 https://doi.org/10.1097/00007632-200105150-00016
37 https://doi.org/10.1097/01.rli.0000185880.92346.9e
38 https://doi.org/10.1109/83.217222
39 https://doi.org/10.1117/12.906964
40 https://doi.org/10.1148/radiol.09091105
41 https://doi.org/10.1148/radiol.10092284
42 https://doi.org/10.1148/radiol.2482072039
43 https://doi.org/10.1148/radiol.2483070362
44 https://doi.org/10.1148/radiol.2503081017
45 https://doi.org/10.1148/radiology.216.3.r00au37672
46 https://doi.org/10.1227/01.neu.0000168185.29659.c5
47 https://doi.org/10.2214/ajr.07.2073
48 https://doi.org/10.2214/ajr.09.3217
49 schema:datePublished 2013-06
50 schema:datePublishedReg 2013-06-01
51 schema:description OBJECTIVES: To evaluate the feasibility of imaging the entire cerebrospinal fluid (CSF) volume using the SPACE MR sequence. METHODS: The SPACE sequence encompassing the brain and spine was performed at 1.5 T in 12 healthy volunteers and 26 consecutive patients with hydrocephalus. Image contrast was estimated using difference ratios in signal intensity between CSF and its background. Segmentation of CSF was performed using geometrical features and a topological assumption of CSF shapes. Subarachnoid and ventricular CSF space volumes were assessed in volunteers and patients and linear discriminant analysis was performed. RESULTS: Image contrast was 0.94 between the CSF and the brain and 0.90 between the CSF and the spinal cord. According to the phantom study, the accuracy of CSF volume measurement was 98.5 %. A clear distinction between patients and healthy volunteers was obtained using the linear discriminant analysis. Significant linear regression was found in healthy volunteers between ventricular (Vv) and the whole subarachnoid CSF volume (Vs) with Vv = 0.083 Vs. CONCLUSIONS: Imaging of the entire CSF volume is feasible in healthy volunteers and patients with hydrocephalus. CSF volume can be obtained on a whole-body scale. This approach may be of use for the diagnosis and follow-up of patients with hydrocephalus. KEY POINTS: • MRI assessment of CSF volume is feasible in healthy volunteers/hydrocephalus patients. • CSF volume can be obtained on a whole-body scale. • The ratio of subarachnoid and ventricular CSF is constant in healthy volunteers. • CSF linear discriminant analysis can distinguish between patients and healthy volunteers. • Entire CSF volume imaging is useful for diagnosing and following hydrocephalus.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N3608528cdf9e4ca588e3e2927002fe7e
56 Ne8eb4fd102c54dc7b5ffe225205d071c
57 sg:journal.1289120
58 schema:name Imaging of the entire cerebrospinal fluid volume with a multistation 3D SPACE MR sequence: feasibility study in patients with hydrocephalus
59 schema:pagination 1450-1458
60 schema:productId N06fc787d50da4d65aafb510bfedfc562
61 N20f83574dc8847898997f92a0854f81b
62 N46d76673ce644c348ac252bc8b3b0fb2
63 Nb34a201be3ec43b0b5454af4f3f4845c
64 Nb6162133b2594bb4acf7519c4a31e4e6
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018993046
66 https://doi.org/10.1007/s00330-012-2732-7
67 schema:sdDatePublished 2019-04-11T02:00
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N5c6f0567e5184d909b9e142d9794b6ab
70 schema:url http://link.springer.com/10.1007%2Fs00330-012-2732-7
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N04fca428083c42a492146b9543d3da23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Cerebrospinal Fluid
76 rdf:type schema:DefinedTerm
77 N06fc787d50da4d65aafb510bfedfc562 schema:name pubmed_id
78 schema:value 23239062
79 rdf:type schema:PropertyValue
80 N0d34f8053feb410a9b46afb68376c5e3 rdf:first sg:person.0603107317.47
81 rdf:rest N77770e99247e40b0b8964eb5c9257ebc
82 N17a273f7e69843189df1af7ef4051121 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Aged
84 rdf:type schema:DefinedTerm
85 N19e10d9b80fc4e76bffd1711d893bf57 rdf:first sg:person.01117353467.02
86 rdf:rest rdf:nil
87 N20f83574dc8847898997f92a0854f81b schema:name dimensions_id
88 schema:value pub.1018993046
89 rdf:type schema:PropertyValue
90 N2527d82db74e4e6dab9fce8f87c304d7 rdf:first sg:person.01354370734.16
91 rdf:rest N0d34f8053feb410a9b46afb68376c5e3
92 N25bc6be60799480b8d2c585707c6c703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Discriminant Analysis
94 rdf:type schema:DefinedTerm
95 N2c4ae5663ff349d4b76f4ae8b6fc92db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Female
97 rdf:type schema:DefinedTerm
98 N3608528cdf9e4ca588e3e2927002fe7e schema:issueNumber 6
99 rdf:type schema:PublicationIssue
100 N4625ce2c792648b0954d277c12ed298e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Feasibility Studies
102 rdf:type schema:DefinedTerm
103 N462948f322d34854a629884edfcd11c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Image Processing, Computer-Assisted
105 rdf:type schema:DefinedTerm
106 N46d76673ce644c348ac252bc8b3b0fb2 schema:name nlm_unique_id
107 schema:value 9114774
108 rdf:type schema:PropertyValue
109 N5c6f0567e5184d909b9e142d9794b6ab schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N6ebb899b6a024bf3b153540111752dd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Hydrocephalus
113 rdf:type schema:DefinedTerm
114 N7256aed18af14a4c90f47d01eb02d0ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Aged, 80 and over
116 rdf:type schema:DefinedTerm
117 N77770e99247e40b0b8964eb5c9257ebc rdf:first sg:person.01303032721.41
118 rdf:rest N7d6d097154454fcc80a6c6cf3dc60f08
119 N7d6d097154454fcc80a6c6cf3dc60f08 rdf:first sg:person.01152164361.47
120 rdf:rest Nef1f18bd80f54896bfd0412250672033
121 N82b61e41a75349cfb7795872bd1fe447 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Young Adult
123 rdf:type schema:DefinedTerm
124 N9c7eb95bbe244adf8ade3732347bdf30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 Nb34a201be3ec43b0b5454af4f3f4845c schema:name doi
128 schema:value 10.1007/s00330-012-2732-7
129 rdf:type schema:PropertyValue
130 Nb6162133b2594bb4acf7519c4a31e4e6 schema:name readcube_id
131 schema:value 5a7ebd2ad2559566172737c4a74cc23ff879d0bce7d1cdcf02bb1656de35e1ed
132 rdf:type schema:PropertyValue
133 Nc56c6298958244ed9413322375c7a400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Male
135 rdf:type schema:DefinedTerm
136 Nc6a80eeaaef84cdca4034559f8b49ba7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Subarachnoid Space
138 rdf:type schema:DefinedTerm
139 Ncb36233e9bd44125a19e79e75dd19e7d schema:name Siemens Healthcare, Saint Denis, France
140 rdf:type schema:Organization
141 Ncb92223540694d4ebcac3e8a168c33c5 rdf:first sg:person.01112602603.66
142 rdf:rest N19e10d9b80fc4e76bffd1711d893bf57
143 Ncdae8be7610341848db1d5a3f114d7ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Tomography, X-Ray Computed
145 rdf:type schema:DefinedTerm
146 Ndb9d4d9dd2a849e8adcae0c0321b3290 rdf:first sg:person.01036454447.02
147 rdf:rest Ncb92223540694d4ebcac3e8a168c33c5
148 Ndc7c6739e0bc45d289a2a688ee0cefd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Regression Analysis
150 rdf:type schema:DefinedTerm
151 Nde02f045e83240e8b2a8463e132e85e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Case-Control Studies
153 rdf:type schema:DefinedTerm
154 Ne44a5312af094b19a3f1195d11cd8c2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Adult
156 rdf:type schema:DefinedTerm
157 Ne8eb4fd102c54dc7b5ffe225205d071c schema:volumeNumber 23
158 rdf:type schema:PublicationVolume
159 Nee0d4a317c1f48e9812a85946ed5e90d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Magnetic Resonance Imaging
161 rdf:type schema:DefinedTerm
162 Nef1f18bd80f54896bfd0412250672033 rdf:first sg:person.01360232034.15
163 rdf:rest Ndb9d4d9dd2a849e8adcae0c0321b3290
164 Nf40b38284b1a45c99fba2e16feb1ae81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Middle Aged
166 rdf:type schema:DefinedTerm
167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
168 schema:name Medical and Health Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
171 schema:name Clinical Sciences
172 rdf:type schema:DefinedTerm
173 sg:journal.1289120 schema:issn 0938-7994
174 1432-1084
175 schema:name European Radiology
176 rdf:type schema:Periodical
177 sg:person.01036454447.02 schema:affiliation Ncb36233e9bd44125a19e79e75dd19e7d
178 schema:familyName Vignaud
179 schema:givenName Alexandre
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036454447.02
181 rdf:type schema:Person
182 sg:person.01112602603.66 schema:affiliation https://www.grid.ac/institutes/grid.412116.1
183 schema:familyName Decq
184 schema:givenName Philippe
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112602603.66
186 rdf:type schema:Person
187 sg:person.01117353467.02 schema:affiliation https://www.grid.ac/institutes/grid.412116.1
188 schema:familyName Rahmouni
189 schema:givenName Alain
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117353467.02
191 rdf:type schema:Person
192 sg:person.01152164361.47 schema:affiliation https://www.grid.ac/institutes/grid.414293.9
193 schema:familyName Leclerc
194 schema:givenName Xavier
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152164361.47
196 rdf:type schema:Person
197 sg:person.01303032721.41 schema:affiliation https://www.grid.ac/institutes/grid.410511.0
198 schema:familyName Petit
199 schema:givenName Eric
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303032721.41
201 rdf:type schema:Person
202 sg:person.01354370734.16 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
203 schema:familyName Hodel
204 schema:givenName Jérôme
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354370734.16
206 rdf:type schema:Person
207 sg:person.01360232034.15 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
208 schema:familyName Zins
209 schema:givenName Marc
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360232034.15
211 rdf:type schema:Person
212 sg:person.0603107317.47 schema:affiliation https://www.grid.ac/institutes/grid.410511.0
213 schema:familyName Lebret
214 schema:givenName Alain
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603107317.47
216 rdf:type schema:Person
217 sg:pub.10.1007/bfb0056195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020734805
218 https://doi.org/10.1007/bfb0056195
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s00330-008-1175-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042655437
221 https://doi.org/10.1007/s00330-008-1175-7
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s00330-010-1758-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037667174
224 https://doi.org/10.1007/s00330-010-1758-y
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s00330-010-1925-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038270732
227 https://doi.org/10.1007/s00330-010-1925-1
228 rdf:type schema:CreativeWork
229 https://app.dimensions.ai/details/publication/pub.1074686107 schema:CreativeWork
230 https://app.dimensions.ai/details/publication/pub.1083037763 schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1083312471 schema:CreativeWork
232 https://doi.org/10.1001/archneur.1994.00540210046012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012369119
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1001/archneur.55.2.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053226122
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1002/jmri.20969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053349646
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/mrm.10436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016893081
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/mrm.20713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001413450
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/0734-189x(85)90133-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004927426
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.mri.2009.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027079309
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1097/00007632-200105150-00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569102
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1097/01.rli.0000185880.92346.9e schema:sameAs https://app.dimensions.ai/details/publication/pub.1016917560
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/83.217222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239064
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1117/12.906964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040764504
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1148/radiol.09091105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024041393
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1148/radiol.10092284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001610571
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1148/radiol.2482072039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007500650
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1148/radiol.2483070362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011923738
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1148/radiol.2503081017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035423615
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1148/radiology.216.3.r00au37672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038778204
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1227/01.neu.0000168185.29659.c5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041065495
267 rdf:type schema:CreativeWork
268 https://doi.org/10.2214/ajr.07.2073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298485
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2214/ajr.09.3217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300396
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.410511.0 schema:alternateName Paris 12 Val de Marne University
273 schema:name Laboratoire Images Signaux et Systèmes Intelligents, Université Paris XII, Créteil, France
274 rdf:type schema:Organization
275 https://www.grid.ac/institutes/grid.412116.1 schema:alternateName Hôpitaux Universitaires Henri Mondor
276 schema:name Department of Neurosurgery, Hôpital Henri Mondor, Créteil, France
277 Department of Radiology, Hôpital Henri Mondor, Créteil, France
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.414293.9 schema:alternateName Hôpital Roger Salengro
280 schema:name Department of Neuroradiology, Hôpital Roger Salengro, Lille, France
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.414363.7 schema:alternateName Hôpital Saint-Joseph
283 schema:name Department of Neuroradiology, Hôpital Henri Mondor, Créteil, France
284 Department of Neuroradiology, Hôpital Roger Salengro, Lille, France
285 Department of Radiology, Hôpital Saint Joseph, 185, Rue Raymond Losserand, Paris, France
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...