Ontology type: schema:ScholarlyArticle
2012-10
AUTHORSPhilippe Garteiser, Sabrina Doblas, Jean-Luc Daire, Mathilde Wagner, Helena Leitao, Valérie Vilgrain, Ralph Sinkus, Bernard E. Van Beers
ABSTRACTOBJECTIVES: To assess the value of the viscoelastic parameters in the characterisation of liver tumours at MR elastography. PATIENTS AND METHODS: Ninety-four patients with liver tumours >1 cm prospectively underwent MR elastography using 50-Hz mechanical waves and a full three-directional motion-sensitive sequence. The model-free viscoelastic parameters (the complex shear modulus and its real and imaginary parts, i.e. the storage and loss moduli) were calculated in 72 lesions after exclusion of cystic, treated or histopathologically undetermined tumours. RESULTS: We observed higher absolute shear modulus and loss modulus in malignant versus benign tumours (3.38 ± 0.26 versus 2.41 ± 0.15 kPa, P < 0.01 and 2.25 ± 0.26 versus 1.05 ± 0.13 kPa, P < 0.001, respectively). Moreover, the loss modulus of hepatocellular carcinomas was significantly higher than in benign hepatocellular tumours. The storage modulus did not differ significantly between malignant and benign tumours. The area under the receiver-operating characteristic curve of loss modulus was significantly larger than that of the absolute shear modulus and storage modulus when comparing malignant and benign lesions. CONCLUSIONS: The increased loss modulus is a better discriminator between benign and malignant tumours than the increased storage modulus or absolute value of the shear modulus. KEY POINTS : • Magnetic Resonance elastography is a new method of assessing the liver. • Increased loss modulus is an indicator of malignancy in hepatic tumours. • Loss modulus is a better discriminator than absolute shear modulus values. • The viscoelastic properties of lesions offer promise for characterising liver tumours. More... »
PAGES2169-2177
http://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6
DOIhttp://dx.doi.org/10.1007/s00330-012-2474-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015353362
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/22572989
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adult",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carcinoma, Hepatocellular",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Elasticity Imaging Techniques",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Liver Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Magnetic Resonance Imaging",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Prospective Studies",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reproducibility of Results",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Viscosity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Young Adult",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
],
"type": "Organization"
},
"familyName": "Garteiser",
"givenName": "Philippe",
"id": "sg:person.0717467440.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717467440.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
],
"type": "Organization"
},
"familyName": "Doblas",
"givenName": "Sabrina",
"id": "sg:person.01165437435.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165437435.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
],
"type": "Organization"
},
"familyName": "Daire",
"givenName": "Jean-Luc",
"id": "sg:person.01345535443.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345535443.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
],
"type": "Organization"
},
"familyName": "Wagner",
"givenName": "Mathilde",
"id": "sg:person.01034526661.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Coimbra",
"id": "https://www.grid.ac/institutes/grid.8051.c",
"name": [
"Department of Radiology, Hospital of the University of Coimbra, Coimbra, Portugal"
],
"type": "Organization"
},
"familyName": "Leitao",
"givenName": "Helena",
"id": "sg:person.01314775026.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314775026.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
],
"type": "Organization"
},
"familyName": "Vilgrain",
"givenName": "Val\u00e9rie",
"id": "sg:person.0761705775.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
],
"type": "Organization"
},
"familyName": "Sinkus",
"givenName": "Ralph",
"id": "sg:person.01046644677.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046644677.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
],
"type": "Organization"
},
"familyName": "Van Beers",
"givenName": "Bernard E.",
"id": "sg:person.01040234232.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040234232.35"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.ultrasmedbio.2006.07.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003552904"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1593/neo.81328",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003791015"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-007-0785-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004762811",
"https://doi.org/10.1007/s00330-007-0785-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-007-0785-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004762811",
"https://doi.org/10.1007/s00330-007-0785-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1365-2036.2008.03805.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007222596"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ca.21006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007899445"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ca.21006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007899445"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/10255840290032658",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007919255"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ultrasmedbio.2009.10.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007969543"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jmbi.2001.4716",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011995969"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mvr.2007.05.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013186972"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1053/j.gastro.2004.09.028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014277049"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mrm.21636",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017498538"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/hep.24147",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018291514"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-009-1566-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020619235",
"https://doi.org/10.1007/s00330-009-1566-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-009-1566-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020619235",
"https://doi.org/10.1007/s00330-009-1566-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-009-1566-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020619235",
"https://doi.org/10.1007/s00330-009-1566-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1361-8415(00)00039-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020723627"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0168-8278(01)00130-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021007716"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0962-8924(97)30078-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021996566"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mri.2004.11.060",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022036705"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/nbm.1030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022058402"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/nbm.1030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022058402"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/hep.24199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032908435"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/rg.292085123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033005010"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1742-4658.2010.07919.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034753054"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/hep.1840220341",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035220949"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/hep.20933",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035519247"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/hep.20933",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035519247"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.285.5430.1028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037004390"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1053/j.gastro.2008.03.076",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037367900"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cgh.2007.06.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039243073"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ultrasmedbio.2011.05.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040038782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0301-5629(01)00433-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040160552"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mrm.20355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042592571"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1159/000315235",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046507390"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mrm.21885",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051114901"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ultrasmedbio.2006.01.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052850953"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.10092489",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053482119"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-9155/45/6/317",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059024025"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-9155/52/24/006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059026903"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-9155/53/1/020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059027085"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.7569924",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062647554"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2214/ajr.07.3123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069299005"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2531595",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069977037"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1082821043",
"type": "CreativeWork"
}
],
"datePublished": "2012-10",
"datePublishedReg": "2012-10-01",
"description": "OBJECTIVES: To assess the value of the viscoelastic parameters in the characterisation of liver tumours at MR elastography.\nPATIENTS AND METHODS: Ninety-four patients with liver tumours >1\u00a0cm prospectively underwent MR elastography using 50-Hz mechanical waves and a full three-directional motion-sensitive sequence. The model-free viscoelastic parameters (the complex shear modulus and its real and imaginary parts, i.e. the storage and loss moduli) were calculated in 72 lesions after exclusion of cystic, treated or histopathologically undetermined tumours.\nRESULTS: We observed higher absolute shear modulus and loss modulus in malignant versus benign tumours (3.38\u2009\u00b1\u20090.26 versus 2.41\u2009\u00b1\u20090.15 kPa, P\u2009<\u20090.01 and 2.25\u2009\u00b1\u20090.26 versus 1.05\u2009\u00b1\u20090.13 kPa, P\u2009<\u20090.001, respectively). Moreover, the loss modulus of hepatocellular carcinomas was significantly higher than in benign hepatocellular tumours. The storage modulus did not differ significantly between malignant and benign tumours. The area under the receiver-operating characteristic curve of loss modulus was significantly larger than that of the absolute shear modulus and storage modulus when comparing malignant and benign lesions.\nCONCLUSIONS: The increased loss modulus is a better discriminator between benign and malignant tumours than the increased storage modulus or absolute value of the shear modulus.\nKEY POINTS : \u2022 Magnetic Resonance elastography is a new method of assessing the liver. \u2022 Increased loss modulus is an indicator of malignancy in hepatic tumours. \u2022 Loss modulus is a better discriminator than absolute shear modulus values. \u2022 The viscoelastic properties of lesions offer promise for characterising liver tumours.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00330-012-2474-6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1289120",
"issn": [
"0938-7994",
"1432-1084"
],
"name": "European Radiology",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"name": "MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation",
"pagination": "2169-2177",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"49273aff529e10e0c600755b2eba294c6e7477de813408c5fbbd4fe960eb2672"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"22572989"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"9114774"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00330-012-2474-6"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015353362"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00330-012-2474-6",
"https://app.dimensions.ai/details/publication/pub.1015353362"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T22:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000511.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00330-012-2474-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6'
This table displays all metadata directly associated to this object as RDF triples.
298 TRIPLES
21 PREDICATES
83 URIs
35 LITERALS
23 BLANK NODES