MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10

AUTHORS

Philippe Garteiser, Sabrina Doblas, Jean-Luc Daire, Mathilde Wagner, Helena Leitao, Valérie Vilgrain, Ralph Sinkus, Bernard E. Van Beers

ABSTRACT

OBJECTIVES: To assess the value of the viscoelastic parameters in the characterisation of liver tumours at MR elastography. PATIENTS AND METHODS: Ninety-four patients with liver tumours >1 cm prospectively underwent MR elastography using 50-Hz mechanical waves and a full three-directional motion-sensitive sequence. The model-free viscoelastic parameters (the complex shear modulus and its real and imaginary parts, i.e. the storage and loss moduli) were calculated in 72 lesions after exclusion of cystic, treated or histopathologically undetermined tumours. RESULTS: We observed higher absolute shear modulus and loss modulus in malignant versus benign tumours (3.38 ± 0.26 versus 2.41 ± 0.15 kPa, P < 0.01 and 2.25 ± 0.26 versus 1.05 ± 0.13 kPa, P < 0.001, respectively). Moreover, the loss modulus of hepatocellular carcinomas was significantly higher than in benign hepatocellular tumours. The storage modulus did not differ significantly between malignant and benign tumours. The area under the receiver-operating characteristic curve of loss modulus was significantly larger than that of the absolute shear modulus and storage modulus when comparing malignant and benign lesions. CONCLUSIONS: The increased loss modulus is a better discriminator between benign and malignant tumours than the increased storage modulus or absolute value of the shear modulus. KEY POINTS : • Magnetic Resonance elastography is a new method of assessing the liver. • Increased loss modulus is an indicator of malignancy in hepatic tumours. • Loss modulus is a better discriminator than absolute shear modulus values. • The viscoelastic properties of lesions offer promise for characterising liver tumours. More... »

PAGES

2169-2177

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6

DOI

http://dx.doi.org/10.1007/s00330-012-2474-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015353362

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22572989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viscosity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garteiser", 
        "givenName": "Philippe", 
        "id": "sg:person.0717467440.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717467440.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doblas", 
        "givenName": "Sabrina", 
        "id": "sg:person.01165437435.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165437435.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daire", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.01345535443.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345535443.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Mathilde", 
        "id": "sg:person.01034526661.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Coimbra", 
          "id": "https://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "Department of Radiology, Hospital of the University of Coimbra, Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leitao", 
        "givenName": "Helena", 
        "id": "sg:person.01314775026.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314775026.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilgrain", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.0761705775.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinkus", 
        "givenName": "Ralph", 
        "id": "sg:person.01046644677.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046644677.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Department of Radiology, University Paris Diderot, Sorbonne Paris Cit\u00e9, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du G\u00e9n\u00e9ral Leclerc, 92118, Clichy Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Beers", 
        "givenName": "Bernard E.", 
        "id": "sg:person.01040234232.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040234232.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2006.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003552904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1593/neo.81328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003791015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0785-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004762811", 
          "https://doi.org/10.1007/s00330-007-0785-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0785-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004762811", 
          "https://doi.org/10.1007/s00330-007-0785-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2036.2008.03805.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007222596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ca.21006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007899445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ca.21006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007899445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10255840290032658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007919255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2009.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007969543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011995969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mvr.2007.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013186972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2004.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014277049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017498538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.24147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018291514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1566-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020619235", 
          "https://doi.org/10.1007/s00330-009-1566-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1566-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020619235", 
          "https://doi.org/10.1007/s00330-009-1566-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1566-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020619235", 
          "https://doi.org/10.1007/s00330-009-1566-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1361-8415(00)00039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020723627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8278(01)00130-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021007716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0962-8924(97)30078-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021996566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2004.11.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022036705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022058402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022058402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.24199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032908435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.292085123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033005010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2010.07919.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034753054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840220341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035220949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.20933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035519247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.20933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035519247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5430.1028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037004390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2008.03.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037367900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cgh.2007.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039243073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2011.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040038782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-5629(01)00433-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040160552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042592571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000315235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046507390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051114901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2006.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052850953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10092489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053482119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/45/6/317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059024025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/52/24/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/53/1/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7569924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062647554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.3123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082821043", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "OBJECTIVES: To assess the value of the viscoelastic parameters in the characterisation of liver tumours at MR elastography.\nPATIENTS AND METHODS: Ninety-four patients with liver tumours >1\u00a0cm prospectively underwent MR elastography using 50-Hz mechanical waves and a full three-directional motion-sensitive sequence. The model-free viscoelastic parameters (the complex shear modulus and its real and imaginary parts, i.e. the storage and loss moduli) were calculated in 72 lesions after exclusion of cystic, treated or histopathologically undetermined tumours.\nRESULTS: We observed higher absolute shear modulus and loss modulus in malignant versus benign tumours (3.38\u2009\u00b1\u20090.26 versus 2.41\u2009\u00b1\u20090.15 kPa, P\u2009<\u20090.01 and 2.25\u2009\u00b1\u20090.26 versus 1.05\u2009\u00b1\u20090.13 kPa, P\u2009<\u20090.001, respectively). Moreover, the loss modulus of hepatocellular carcinomas was significantly higher than in benign hepatocellular tumours. The storage modulus did not differ significantly between malignant and benign tumours. The area under the receiver-operating characteristic curve of loss modulus was significantly larger than that of the absolute shear modulus and storage modulus when comparing malignant and benign lesions.\nCONCLUSIONS: The increased loss modulus is a better discriminator between benign and malignant tumours than the increased storage modulus or absolute value of the shear modulus.\nKEY POINTS                         : \u2022 Magnetic Resonance elastography is a new method of assessing the liver.                                                  \u2022 Increased loss modulus is an indicator of malignancy in hepatic tumours.                                                  \u2022 Loss modulus is a better discriminator than absolute shear modulus values.                                                  \u2022 The viscoelastic properties of lesions offer promise for characterising liver tumours.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-012-2474-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation", 
    "pagination": "2169-2177", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49273aff529e10e0c600755b2eba294c6e7477de813408c5fbbd4fe960eb2672"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22572989"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-012-2474-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015353362"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-012-2474-6", 
      "https://app.dimensions.ai/details/publication/pub.1015353362"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-012-2474-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-012-2474-6'


 

This table displays all metadata directly associated to this object as RDF triples.

298 TRIPLES      21 PREDICATES      83 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-012-2474-6 schema:about N07d84bc1625242eeba25c88d796a6b2c
2 N17566e325bea48ebbb58ef91aaf0976d
3 N21d17c42cd3e422ba1a491117477ff4e
4 N231bc731bd2f46758947d4aaba61655b
5 N53415b266be84142bfda5dbd6f885927
6 N6f013a0048594695abdfcf256a4fb931
7 Na4033f3674ed41ecba060b4a992ea547
8 Nc25c8f68ed5b4f74bd699a5805c2eb6e
9 Nc8ace98323bf461ea33e81226ca0d072
10 Ne16e0103d8ba4a348b8a24c09937ae90
11 Nf6709984ec634de5a1f00a557ecf2b41
12 Nfa09801b6ec940b782dc564e717cb809
13 Nfa8ffdd9d5cc425fbd5cfdcebe055eb1
14 Nfd42b5369ebf41f087eac761d5e9d1d2
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N4370012a6cf549e88caa948801c01d0a
18 schema:citation sg:pub.10.1007/s00330-007-0785-9
19 sg:pub.10.1007/s00330-009-1566-4
20 https://app.dimensions.ai/details/publication/pub.1082821043
21 https://doi.org/10.1002/ca.21006
22 https://doi.org/10.1002/hep.1840220341
23 https://doi.org/10.1002/hep.20933
24 https://doi.org/10.1002/hep.24147
25 https://doi.org/10.1002/hep.24199
26 https://doi.org/10.1002/mrm.20355
27 https://doi.org/10.1002/mrm.21636
28 https://doi.org/10.1002/mrm.21885
29 https://doi.org/10.1002/nbm.1030
30 https://doi.org/10.1006/jmbi.2001.4716
31 https://doi.org/10.1016/j.cgh.2007.06.012
32 https://doi.org/10.1016/j.mri.2004.11.060
33 https://doi.org/10.1016/j.mvr.2007.05.003
34 https://doi.org/10.1016/j.ultrasmedbio.2006.01.003
35 https://doi.org/10.1016/j.ultrasmedbio.2006.07.013
36 https://doi.org/10.1016/j.ultrasmedbio.2009.10.009
37 https://doi.org/10.1016/j.ultrasmedbio.2011.05.016
38 https://doi.org/10.1016/s0168-8278(01)00130-1
39 https://doi.org/10.1016/s0301-5629(01)00433-1
40 https://doi.org/10.1016/s0962-8924(97)30078-6
41 https://doi.org/10.1016/s1361-8415(00)00039-6
42 https://doi.org/10.1053/j.gastro.2004.09.028
43 https://doi.org/10.1053/j.gastro.2008.03.076
44 https://doi.org/10.1080/10255840290032658
45 https://doi.org/10.1088/0031-9155/45/6/317
46 https://doi.org/10.1088/0031-9155/52/24/006
47 https://doi.org/10.1088/0031-9155/53/1/020
48 https://doi.org/10.1111/j.1365-2036.2008.03805.x
49 https://doi.org/10.1111/j.1742-4658.2010.07919.x
50 https://doi.org/10.1126/science.285.5430.1028
51 https://doi.org/10.1126/science.7569924
52 https://doi.org/10.1148/radiol.10092489
53 https://doi.org/10.1148/rg.292085123
54 https://doi.org/10.1159/000315235
55 https://doi.org/10.1593/neo.81328
56 https://doi.org/10.2214/ajr.07.3123
57 https://doi.org/10.2307/2531595
58 schema:datePublished 2012-10
59 schema:datePublishedReg 2012-10-01
60 schema:description OBJECTIVES: To assess the value of the viscoelastic parameters in the characterisation of liver tumours at MR elastography. PATIENTS AND METHODS: Ninety-four patients with liver tumours >1 cm prospectively underwent MR elastography using 50-Hz mechanical waves and a full three-directional motion-sensitive sequence. The model-free viscoelastic parameters (the complex shear modulus and its real and imaginary parts, i.e. the storage and loss moduli) were calculated in 72 lesions after exclusion of cystic, treated or histopathologically undetermined tumours. RESULTS: We observed higher absolute shear modulus and loss modulus in malignant versus benign tumours (3.38 ± 0.26 versus 2.41 ± 0.15 kPa, P < 0.01 and 2.25 ± 0.26 versus 1.05 ± 0.13 kPa, P < 0.001, respectively). Moreover, the loss modulus of hepatocellular carcinomas was significantly higher than in benign hepatocellular tumours. The storage modulus did not differ significantly between malignant and benign tumours. The area under the receiver-operating characteristic curve of loss modulus was significantly larger than that of the absolute shear modulus and storage modulus when comparing malignant and benign lesions. CONCLUSIONS: The increased loss modulus is a better discriminator between benign and malignant tumours than the increased storage modulus or absolute value of the shear modulus. KEY POINTS : • Magnetic Resonance elastography is a new method of assessing the liver. • Increased loss modulus is an indicator of malignancy in hepatic tumours. • Loss modulus is a better discriminator than absolute shear modulus values. • The viscoelastic properties of lesions offer promise for characterising liver tumours.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf N7cc143c6341f4cdeaba27cc502293453
65 N98b91f817103483fb5d0791792c93431
66 sg:journal.1289120
67 schema:name MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation
68 schema:pagination 2169-2177
69 schema:productId N4155478e500046aab3c8e922107dbe27
70 N591bd722045943c19456c3877a292f83
71 N96d2ce430a554a71a1c7a0275dfbe94d
72 Nc83fff44b4c14b0f95ad5978b6f9568b
73 Ne678c2cace9e412c945cdebe089c96f7
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015353362
75 https://doi.org/10.1007/s00330-012-2474-6
76 schema:sdDatePublished 2019-04-10T22:31
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Na441c71b5ccb4d22904cbc44696122fe
79 schema:url http://link.springer.com/10.1007%2Fs00330-012-2474-6
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N07d84bc1625242eeba25c88d796a6b2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Elasticity Imaging Techniques
85 rdf:type schema:DefinedTerm
86 N17566e325bea48ebbb58ef91aaf0976d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Magnetic Resonance Imaging
88 rdf:type schema:DefinedTerm
89 N21d17c42cd3e422ba1a491117477ff4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Viscosity
91 rdf:type schema:DefinedTerm
92 N231bc731bd2f46758947d4aaba61655b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Young Adult
94 rdf:type schema:DefinedTerm
95 N4155478e500046aab3c8e922107dbe27 schema:name nlm_unique_id
96 schema:value 9114774
97 rdf:type schema:PropertyValue
98 N4370012a6cf549e88caa948801c01d0a rdf:first sg:person.0717467440.69
99 rdf:rest Nd6f3d237ffde42ed9e4f5949834edc2a
100 N53415b266be84142bfda5dbd6f885927 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Reproducibility of Results
102 rdf:type schema:DefinedTerm
103 N57775c2a8512486ab015d16b7a9e20d9 rdf:first sg:person.01046644677.25
104 rdf:rest Nbd724d89fcc44c61ae30a674b5209858
105 N591bd722045943c19456c3877a292f83 schema:name dimensions_id
106 schema:value pub.1015353362
107 rdf:type schema:PropertyValue
108 N6f013a0048594695abdfcf256a4fb931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Aged
110 rdf:type schema:DefinedTerm
111 N7cc143c6341f4cdeaba27cc502293453 schema:issueNumber 10
112 rdf:type schema:PublicationIssue
113 N8691d9a00d564344bd8fa28405bcdf9c rdf:first sg:person.01034526661.15
114 rdf:rest Nb6ebeb546c424dcbb813b4072094a145
115 N91fe4855afd7490eb164d8fb8e411a0f rdf:first sg:person.0761705775.52
116 rdf:rest N57775c2a8512486ab015d16b7a9e20d9
117 N96d2ce430a554a71a1c7a0275dfbe94d schema:name readcube_id
118 schema:value 49273aff529e10e0c600755b2eba294c6e7477de813408c5fbbd4fe960eb2672
119 rdf:type schema:PropertyValue
120 N98b91f817103483fb5d0791792c93431 schema:volumeNumber 22
121 rdf:type schema:PublicationVolume
122 Na4033f3674ed41ecba060b4a992ea547 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Carcinoma, Hepatocellular
124 rdf:type schema:DefinedTerm
125 Na441c71b5ccb4d22904cbc44696122fe schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nac47d275cdbc40c49539fc53bf63058d rdf:first sg:person.01345535443.99
128 rdf:rest N8691d9a00d564344bd8fa28405bcdf9c
129 Nb6ebeb546c424dcbb813b4072094a145 rdf:first sg:person.01314775026.02
130 rdf:rest N91fe4855afd7490eb164d8fb8e411a0f
131 Nbd724d89fcc44c61ae30a674b5209858 rdf:first sg:person.01040234232.35
132 rdf:rest rdf:nil
133 Nc25c8f68ed5b4f74bd699a5805c2eb6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Female
135 rdf:type schema:DefinedTerm
136 Nc83fff44b4c14b0f95ad5978b6f9568b schema:name doi
137 schema:value 10.1007/s00330-012-2474-6
138 rdf:type schema:PropertyValue
139 Nc8ace98323bf461ea33e81226ca0d072 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Adult
141 rdf:type schema:DefinedTerm
142 Nd6f3d237ffde42ed9e4f5949834edc2a rdf:first sg:person.01165437435.53
143 rdf:rest Nac47d275cdbc40c49539fc53bf63058d
144 Ne16e0103d8ba4a348b8a24c09937ae90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Liver Neoplasms
146 rdf:type schema:DefinedTerm
147 Ne678c2cace9e412c945cdebe089c96f7 schema:name pubmed_id
148 schema:value 22572989
149 rdf:type schema:PropertyValue
150 Nf6709984ec634de5a1f00a557ecf2b41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Humans
152 rdf:type schema:DefinedTerm
153 Nfa09801b6ec940b782dc564e717cb809 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Middle Aged
155 rdf:type schema:DefinedTerm
156 Nfa8ffdd9d5cc425fbd5cfdcebe055eb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Prospective Studies
158 rdf:type schema:DefinedTerm
159 Nfd42b5369ebf41f087eac761d5e9d1d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Male
161 rdf:type schema:DefinedTerm
162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
163 schema:name Medical and Health Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
166 schema:name Clinical Sciences
167 rdf:type schema:DefinedTerm
168 sg:journal.1289120 schema:issn 0938-7994
169 1432-1084
170 schema:name European Radiology
171 rdf:type schema:Periodical
172 sg:person.01034526661.15 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
173 schema:familyName Wagner
174 schema:givenName Mathilde
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15
176 rdf:type schema:Person
177 sg:person.01040234232.35 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
178 schema:familyName Van Beers
179 schema:givenName Bernard E.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040234232.35
181 rdf:type schema:Person
182 sg:person.01046644677.25 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
183 schema:familyName Sinkus
184 schema:givenName Ralph
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046644677.25
186 rdf:type schema:Person
187 sg:person.01165437435.53 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
188 schema:familyName Doblas
189 schema:givenName Sabrina
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165437435.53
191 rdf:type schema:Person
192 sg:person.01314775026.02 schema:affiliation https://www.grid.ac/institutes/grid.8051.c
193 schema:familyName Leitao
194 schema:givenName Helena
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314775026.02
196 rdf:type schema:Person
197 sg:person.01345535443.99 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
198 schema:familyName Daire
199 schema:givenName Jean-Luc
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345535443.99
201 rdf:type schema:Person
202 sg:person.0717467440.69 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
203 schema:familyName Garteiser
204 schema:givenName Philippe
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717467440.69
206 rdf:type schema:Person
207 sg:person.0761705775.52 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
208 schema:familyName Vilgrain
209 schema:givenName Valérie
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52
211 rdf:type schema:Person
212 sg:pub.10.1007/s00330-007-0785-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004762811
213 https://doi.org/10.1007/s00330-007-0785-9
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00330-009-1566-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020619235
216 https://doi.org/10.1007/s00330-009-1566-4
217 rdf:type schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1082821043 schema:CreativeWork
219 https://doi.org/10.1002/ca.21006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007899445
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/hep.1840220341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035220949
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1002/hep.20933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035519247
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1002/hep.24147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018291514
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1002/hep.24199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032908435
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/mrm.20355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042592571
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/mrm.21636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017498538
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1002/mrm.21885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051114901
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1002/nbm.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022058402
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1006/jmbi.2001.4716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011995969
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.cgh.2007.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039243073
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.mri.2004.11.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022036705
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.mvr.2007.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013186972
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.ultrasmedbio.2006.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052850953
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.ultrasmedbio.2006.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003552904
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.ultrasmedbio.2009.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007969543
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.ultrasmedbio.2011.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040038782
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/s0168-8278(01)00130-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021007716
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/s0301-5629(01)00433-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040160552
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/s0962-8924(97)30078-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021996566
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/s1361-8415(00)00039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020723627
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1053/j.gastro.2004.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014277049
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1053/j.gastro.2008.03.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037367900
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1080/10255840290032658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007919255
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1088/0031-9155/45/6/317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059024025
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1088/0031-9155/52/24/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026903
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1088/0031-9155/53/1/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027085
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1111/j.1365-2036.2008.03805.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007222596
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1111/j.1742-4658.2010.07919.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034753054
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1126/science.285.5430.1028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037004390
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1126/science.7569924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062647554
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1148/radiol.10092489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053482119
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1148/rg.292085123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033005010
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1159/000315235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046507390
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1593/neo.81328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003791015
288 rdf:type schema:CreativeWork
289 https://doi.org/10.2214/ajr.07.3123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299005
290 rdf:type schema:CreativeWork
291 https://doi.org/10.2307/2531595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977037
292 rdf:type schema:CreativeWork
293 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
294 schema:name Department of Radiology, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du Général Leclerc, 92118, Clichy Cedex, France
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.8051.c schema:alternateName University of Coimbra
297 schema:name Department of Radiology, Hospital of the University of Coimbra, Coimbra, Portugal
298 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...