Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

Livia Bernardin, Philip Dilks, Sidath Liyanage, Marc E. Miquel, Anju Sahdev, Andrea Rockall

ABSTRACT

OBJECTIVES: To determine whether threshold criteria using semi-quantitative multiphase-dynamic contrast-enhanced magnetic resonance imaging (DCE- MRI) can improve prediction of malignancy in complex adnexal masses. METHODS: MRI features of 70 complex adnexal masses with enhancing components in 63 patients were reviewed and correlated with histopathology (n = 67) or radiological follow-up (n = 3). Masses were categorised as benign (n = 34) or borderline/invasive malignant (n = 36). Borderline lesions (n = 6) were also analysed separately. Using the semi-quantitative breast analysis software, regions of interest were drawn around the most avidly enhancing component of each lesion. Maximum absolute enhancement of signal intensities (SI(max)), maximum relative enhancement (SI(rel)) and wash-in rate (WIR) were recorded. Optimal threshold criteria were established to predict borderline/invasive malignancy. RESULTS: There was a significant difference in mean SI(max) (P < 0.05), SI(rel) (P < 0.01) and WIR (P < 0.001) between benign and borderline/invasive malignant groups. A cut-off WIR ≥ 9.5 l/s had a specificity of 88% and positive predictive value of 86% for predicting malignancy, significantly better than conventional MRI (62%, P < 0.01). WIR <8.2 l/s had a negative predictive value of 94%. CONCLUSION: Threshold criteria using semi-quantitative multiphase DCE-MRI improves specificity in the prediction of malignancy in complex adnexal masses with enhancing components and is complementary to standard qualitative assessment. KEY POINTS: Semi-quantitative DCE-MRI threshold criteria are effective for predicting ovarian malignancy. The surgical approach may be altered depending on DCE-MRI threshold criteria analysis. Borderline tumours demonstrate significant overlap with benign lesions using DCE-MRI threshold criteria. More... »

PAGES

880-890

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-011-2331-z

DOI

http://dx.doi.org/10.1007/s00330-011-2331-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022808320

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22095438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adnexal Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Meglumine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "St Bartholomew's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416353.6", 
          "name": [
            "Policlinico GB Rossi, P.le L.A. Scuro, 37134, Verona, Italy", 
            "St Bartholomew\u2019s Hospital, EC1A 7BE, West Smithfield, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernardin", 
        "givenName": "Livia", 
        "id": "sg:person.01320521434.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320521434.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Bartholomew's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416353.6", 
          "name": [
            "Barts and the London NHS Trust, Imaging (Ground Floor), Bart\u2019s Cancer Centre, King George V Wing, St Bartholomew\u2019s Hospital, EC1A 7BE, West Smithfield, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dilks", 
        "givenName": "Philip", 
        "id": "sg:person.0707632123.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707632123.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Bartholomew's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416353.6", 
          "name": [
            "Barts and the London NHS Trust, Imaging (Ground Floor), Bart\u2019s Cancer Centre, King George V Wing, St Bartholomew\u2019s Hospital, EC1A 7BE, West Smithfield, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liyanage", 
        "givenName": "Sidath", 
        "id": "sg:person.01251544247.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251544247.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Bartholomew's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416353.6", 
          "name": [
            "Clinical Physics, Barts and the London NHS Trust, Imaging, Bart\u2019s Cancer Centre, King George V Wing, St Bartholomew\u2019s Hospital, EC1A 7BE, West Smithfield, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miquel", 
        "givenName": "Marc E.", 
        "id": "sg:person.01232511460.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232511460.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Bartholomew's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416353.6", 
          "name": [
            "Barts and the London NHS Trust, Imaging (Ground Floor), Bart\u2019s Cancer Centre, King George V Wing, St Bartholomew\u2019s Hospital, EC1A 7BE, West Smithfield, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahdev", 
        "givenName": "Anju", 
        "id": "sg:person.0610506370.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610506370.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Bartholomew's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416353.6", 
          "name": [
            "Barts and the London NHS Trust, Imaging (Ground Floor), Bart\u2019s Cancer Centre, King George V Wing, St Bartholomew\u2019s Hospital, EC1A 7BE, West Smithfield, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rockall", 
        "givenName": "Andrea", 
        "id": "sg:person.0767534533.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767534533.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10334-003-0027-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000780466", 
          "https://doi.org/10.1007/s10334-003-0027-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001612959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.11.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001769397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2481071120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004530729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijgo.2003.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008718393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013232601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013232601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1795-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014470785", 
          "https://doi.org/10.1007/s00330-010-1795-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1795-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014470785", 
          "https://doi.org/10.1007/s00330-010-1795-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.214.1.r00ja3939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020058289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.265045206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026477877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027512081", 
          "https://doi.org/10.1007/s00330-006-0163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027512081", 
          "https://doi.org/10.1007/s00330-006-0163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.215.1.r00ap01267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029241766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000237810.88251.9e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029592839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000237810.88251.9e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029592839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1584-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297631", 
          "https://doi.org/10.1007/s00330-009-1584-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1584-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297631", 
          "https://doi.org/10.1007/s00330-009-1584-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1584-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297631", 
          "https://doi.org/10.1007/s00330-009-1584-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2008.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031622648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-0528.1993.tb15109.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032695745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-0528.1993.tb15109.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032695745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1525-1438.2006.00753.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037129051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1525-1438.2006.00753.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037129051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181c2f0a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037427941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181c2f0a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037427941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181c2f0a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037427941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1299-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490388", 
          "https://doi.org/10.1007/s00330-009-1299-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1299-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490388", 
          "https://doi.org/10.1007/s00330-009-1299-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053376793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/90706205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064570409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.06.1329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.180.5.1801297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02841850802064995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077664521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02841850802064995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077664521"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "OBJECTIVES: To determine whether threshold criteria using semi-quantitative multiphase-dynamic contrast-enhanced magnetic resonance imaging (DCE- MRI) can improve prediction of malignancy in complex adnexal masses.\nMETHODS: MRI features of 70 complex adnexal masses with enhancing components in 63 patients were reviewed and correlated with histopathology (n = 67) or radiological follow-up (n = 3). Masses were categorised as benign (n = 34) or borderline/invasive malignant (n = 36). Borderline lesions (n = 6) were also analysed separately. Using the semi-quantitative breast analysis software, regions of interest were drawn around the most avidly enhancing component of each lesion. Maximum absolute enhancement of signal intensities (SI(max)), maximum relative enhancement (SI(rel)) and wash-in rate (WIR) were recorded. Optimal threshold criteria were established to predict borderline/invasive malignancy.\nRESULTS: There was a significant difference in mean SI(max) (P < 0.05), SI(rel) (P < 0.01) and WIR (P < 0.001) between benign and borderline/invasive malignant groups. A cut-off WIR \u2265 9.5 l/s had a specificity of 88% and positive predictive value of 86% for predicting malignancy, significantly better than conventional MRI (62%, P < 0.01). WIR <8.2 l/s had a negative predictive value of 94%.\nCONCLUSION: Threshold criteria using semi-quantitative multiphase DCE-MRI improves specificity in the prediction of malignancy in complex adnexal masses with enhancing components and is complementary to standard qualitative assessment.\nKEY POINTS: Semi-quantitative DCE-MRI threshold criteria are effective for predicting ovarian malignancy. The surgical approach may be altered depending on DCE-MRI threshold criteria analysis. Borderline tumours demonstrate significant overlap with benign lesions using DCE-MRI threshold criteria.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-011-2331-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation", 
    "pagination": "880-890", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ca9eb29fc85e540f21fb6801d0831ac90a47667ac745bdb91f4ed06e9e57a11"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22095438"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-011-2331-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022808320"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-011-2331-z", 
      "https://app.dimensions.ai/details/publication/pub.1022808320"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-011-2331-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-011-2331-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-011-2331-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-011-2331-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-011-2331-z'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      67 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-011-2331-z schema:about N0cab92f1044649459ee3c55f0019213f
2 N0db22b0ec0ee464489171d106b3f8478
3 N0e31a15790044e5d97c99a05a311f113
4 N2e3d7d84160f415f8830ef9d73b1a717
5 N3944bb60e0724e6389a9b0dc4d6e18ef
6 N4ce27db08a854bd3b369b4104cbda967
7 N60da3246d12543beac3ce41d72f47bfe
8 N67f05545738c44639d82d12a55f9e187
9 N6ec7d9a204c442dcb0929f6c00e96261
10 N89bca54f49f141dc896681ce3cac33c0
11 Na7d867e2546c4c26804d5863ded210f4
12 Nad36d904eca64ad39c3e7b6705a5f206
13 Nbc9f40b9d58a47c1a6ea2afbc6dcfa52
14 Nd498aa72e7944feb9a3fc5cac1b46fcb
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N194282709a954c4b94033ada690e79e2
18 schema:citation sg:pub.10.1007/s00330-006-0163-z
19 sg:pub.10.1007/s00330-009-1299-4
20 sg:pub.10.1007/s00330-009-1584-2
21 sg:pub.10.1007/s00330-010-1795-6
22 sg:pub.10.1007/s10334-003-0027-3
23 https://doi.org/10.1002/jmri.20369
24 https://doi.org/10.1002/jmri.21377
25 https://doi.org/10.1016/j.crad.2008.09.011
26 https://doi.org/10.1016/j.ejrad.2010.11.039
27 https://doi.org/10.1016/j.ijgo.2003.10.009
28 https://doi.org/10.1080/02841850802064995
29 https://doi.org/10.1097/01.rct.0000237810.88251.9e
30 https://doi.org/10.1097/rct.0b013e3181c2f0a2
31 https://doi.org/10.1111/j.1471-0528.1993.tb15109.x
32 https://doi.org/10.1111/j.1525-1438.2006.00753.x
33 https://doi.org/10.1148/radiol.10100751
34 https://doi.org/10.1148/radiol.2481071120
35 https://doi.org/10.1148/radiology.214.1.r00ja3939
36 https://doi.org/10.1148/radiology.215.1.r00ap01267
37 https://doi.org/10.1148/rg.265045206
38 https://doi.org/10.1259/bjr/90706205
39 https://doi.org/10.2214/ajr.05.0905
40 https://doi.org/10.2214/ajr.06.1329
41 https://doi.org/10.2214/ajr.180.5.1801297
42 schema:datePublished 2012-04
43 schema:datePublishedReg 2012-04-01
44 schema:description OBJECTIVES: To determine whether threshold criteria using semi-quantitative multiphase-dynamic contrast-enhanced magnetic resonance imaging (DCE- MRI) can improve prediction of malignancy in complex adnexal masses. METHODS: MRI features of 70 complex adnexal masses with enhancing components in 63 patients were reviewed and correlated with histopathology (n = 67) or radiological follow-up (n = 3). Masses were categorised as benign (n = 34) or borderline/invasive malignant (n = 36). Borderline lesions (n = 6) were also analysed separately. Using the semi-quantitative breast analysis software, regions of interest were drawn around the most avidly enhancing component of each lesion. Maximum absolute enhancement of signal intensities (SI(max)), maximum relative enhancement (SI(rel)) and wash-in rate (WIR) were recorded. Optimal threshold criteria were established to predict borderline/invasive malignancy. RESULTS: There was a significant difference in mean SI(max) (P < 0.05), SI(rel) (P < 0.01) and WIR (P < 0.001) between benign and borderline/invasive malignant groups. A cut-off WIR ≥ 9.5 l/s had a specificity of 88% and positive predictive value of 86% for predicting malignancy, significantly better than conventional MRI (62%, P < 0.01). WIR <8.2 l/s had a negative predictive value of 94%. CONCLUSION: Threshold criteria using semi-quantitative multiphase DCE-MRI improves specificity in the prediction of malignancy in complex adnexal masses with enhancing components and is complementary to standard qualitative assessment. KEY POINTS: Semi-quantitative DCE-MRI threshold criteria are effective for predicting ovarian malignancy. The surgical approach may be altered depending on DCE-MRI threshold criteria analysis. Borderline tumours demonstrate significant overlap with benign lesions using DCE-MRI threshold criteria.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N6e8793717ad94a1fa653de236b87c389
49 Ncbda1c5386824bd898dda2c9c62b3fbe
50 sg:journal.1289120
51 schema:name Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation
52 schema:pagination 880-890
53 schema:productId N1880aaacbaba4e75abe4b7408727b7b0
54 N1d3008c776644cd0a8933ad0443717fe
55 N667b09d4988344e3afe9ef492a7fc53e
56 N7d49e50bd74c4b8cbc4027f7e6bf1a2f
57 Nf7c583e929c64bd899f49963b8741d1c
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022808320
59 https://doi.org/10.1007/s00330-011-2331-z
60 schema:sdDatePublished 2019-04-11T00:16
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nca62073dc2784d188d893f6779a3aeae
63 schema:url http://link.springer.com/10.1007%2Fs00330-011-2331-z
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0cab92f1044649459ee3c55f0019213f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Statistics as Topic
69 rdf:type schema:DefinedTerm
70 N0db22b0ec0ee464489171d106b3f8478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Image Enhancement
72 rdf:type schema:DefinedTerm
73 N0e31a15790044e5d97c99a05a311f113 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N1880aaacbaba4e75abe4b7408727b7b0 schema:name nlm_unique_id
77 schema:value 9114774
78 rdf:type schema:PropertyValue
79 N194282709a954c4b94033ada690e79e2 rdf:first sg:person.01320521434.93
80 rdf:rest N1fd0ab7773664a73ae890ac57d59eba5
81 N1d3008c776644cd0a8933ad0443717fe schema:name doi
82 schema:value 10.1007/s00330-011-2331-z
83 rdf:type schema:PropertyValue
84 N1fd0ab7773664a73ae890ac57d59eba5 rdf:first sg:person.0707632123.37
85 rdf:rest N630014b82bc445a6bbfa163e6190fa8e
86 N2e3d7d84160f415f8830ef9d73b1a717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Magnetic Resonance Imaging
88 rdf:type schema:DefinedTerm
89 N3944bb60e0724e6389a9b0dc4d6e18ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Reproducibility of Results
91 rdf:type schema:DefinedTerm
92 N4ce27db08a854bd3b369b4104cbda967 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Contrast Media
94 rdf:type schema:DefinedTerm
95 N60da3246d12543beac3ce41d72f47bfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Ovarian Neoplasms
97 rdf:type schema:DefinedTerm
98 N630014b82bc445a6bbfa163e6190fa8e rdf:first sg:person.01251544247.40
99 rdf:rest Nc1d35b8cd26348938778fb24a04e4a53
100 N667b09d4988344e3afe9ef492a7fc53e schema:name pubmed_id
101 schema:value 22095438
102 rdf:type schema:PropertyValue
103 N67f05545738c44639d82d12a55f9e187 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Meglumine
105 rdf:type schema:DefinedTerm
106 N6e8793717ad94a1fa653de236b87c389 schema:volumeNumber 22
107 rdf:type schema:PublicationVolume
108 N6ec7d9a204c442dcb0929f6c00e96261 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Diagnosis, Differential
110 rdf:type schema:DefinedTerm
111 N7d49e50bd74c4b8cbc4027f7e6bf1a2f schema:name readcube_id
112 schema:value 6ca9eb29fc85e540f21fb6801d0831ac90a47667ac745bdb91f4ed06e9e57a11
113 rdf:type schema:PropertyValue
114 N89bca54f49f141dc896681ce3cac33c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Female
116 rdf:type schema:DefinedTerm
117 N973ddfeab3a347b4a5475721b40c34cd rdf:first sg:person.0610506370.83
118 rdf:rest Nf2fbfb52723f4f069a4ab9228fba5f44
119 Na7d867e2546c4c26804d5863ded210f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Adnexal Diseases
121 rdf:type schema:DefinedTerm
122 Nad36d904eca64ad39c3e7b6705a5f206 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Image Interpretation, Computer-Assisted
124 rdf:type schema:DefinedTerm
125 Nbc9f40b9d58a47c1a6ea2afbc6dcfa52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Sensitivity and Specificity
127 rdf:type schema:DefinedTerm
128 Nc1d35b8cd26348938778fb24a04e4a53 rdf:first sg:person.01232511460.37
129 rdf:rest N973ddfeab3a347b4a5475721b40c34cd
130 Nca62073dc2784d188d893f6779a3aeae schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Ncbda1c5386824bd898dda2c9c62b3fbe schema:issueNumber 4
133 rdf:type schema:PublicationIssue
134 Nd498aa72e7944feb9a3fc5cac1b46fcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Organometallic Compounds
136 rdf:type schema:DefinedTerm
137 Nf2fbfb52723f4f069a4ab9228fba5f44 rdf:first sg:person.0767534533.05
138 rdf:rest rdf:nil
139 Nf7c583e929c64bd899f49963b8741d1c schema:name dimensions_id
140 schema:value pub.1022808320
141 rdf:type schema:PropertyValue
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
146 schema:name Clinical Sciences
147 rdf:type schema:DefinedTerm
148 sg:journal.1289120 schema:issn 0938-7994
149 1432-1084
150 schema:name European Radiology
151 rdf:type schema:Periodical
152 sg:person.01232511460.37 schema:affiliation https://www.grid.ac/institutes/grid.416353.6
153 schema:familyName Miquel
154 schema:givenName Marc E.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232511460.37
156 rdf:type schema:Person
157 sg:person.01251544247.40 schema:affiliation https://www.grid.ac/institutes/grid.416353.6
158 schema:familyName Liyanage
159 schema:givenName Sidath
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251544247.40
161 rdf:type schema:Person
162 sg:person.01320521434.93 schema:affiliation https://www.grid.ac/institutes/grid.416353.6
163 schema:familyName Bernardin
164 schema:givenName Livia
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320521434.93
166 rdf:type schema:Person
167 sg:person.0610506370.83 schema:affiliation https://www.grid.ac/institutes/grid.416353.6
168 schema:familyName Sahdev
169 schema:givenName Anju
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610506370.83
171 rdf:type schema:Person
172 sg:person.0707632123.37 schema:affiliation https://www.grid.ac/institutes/grid.416353.6
173 schema:familyName Dilks
174 schema:givenName Philip
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707632123.37
176 rdf:type schema:Person
177 sg:person.0767534533.05 schema:affiliation https://www.grid.ac/institutes/grid.416353.6
178 schema:familyName Rockall
179 schema:givenName Andrea
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767534533.05
181 rdf:type schema:Person
182 sg:pub.10.1007/s00330-006-0163-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027512081
183 https://doi.org/10.1007/s00330-006-0163-z
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00330-009-1299-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040490388
186 https://doi.org/10.1007/s00330-009-1299-4
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00330-009-1584-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031297631
189 https://doi.org/10.1007/s00330-009-1584-2
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s00330-010-1795-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014470785
192 https://doi.org/10.1007/s00330-010-1795-6
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s10334-003-0027-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000780466
195 https://doi.org/10.1007/s10334-003-0027-3
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/jmri.20369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013232601
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/jmri.21377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053376793
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.crad.2008.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031622648
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ejrad.2010.11.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001769397
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.ijgo.2003.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008718393
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1080/02841850802064995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077664521
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1097/01.rct.0000237810.88251.9e schema:sameAs https://app.dimensions.ai/details/publication/pub.1029592839
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1097/rct.0b013e3181c2f0a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037427941
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/j.1471-0528.1993.tb15109.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032695745
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/j.1525-1438.2006.00753.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037129051
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1148/radiol.10100751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001612959
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1148/radiol.2481071120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004530729
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1148/radiology.214.1.r00ja3939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020058289
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1148/radiology.215.1.r00ap01267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029241766
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1148/rg.265045206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477877
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1259/bjr/90706205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064570409
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2214/ajr.05.0905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297725
230 rdf:type schema:CreativeWork
231 https://doi.org/10.2214/ajr.06.1329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298283
232 rdf:type schema:CreativeWork
233 https://doi.org/10.2214/ajr.180.5.1801297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325422
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.416353.6 schema:alternateName St Bartholomew's Hospital
236 schema:name Barts and the London NHS Trust, Imaging (Ground Floor), Bart’s Cancer Centre, King George V Wing, St Bartholomew’s Hospital, EC1A 7BE, West Smithfield, London, UK
237 Clinical Physics, Barts and the London NHS Trust, Imaging, Bart’s Cancer Centre, King George V Wing, St Bartholomew’s Hospital, EC1A 7BE, West Smithfield, London, UK
238 Policlinico GB Rossi, P.le L.A. Scuro, 37134, Verona, Italy
239 St Bartholomew’s Hospital, EC1A 7BE, West Smithfield, London, UK
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...