Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: a preliminary study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

Isabelle Thomassin-Naggara, Daniel Balvay, Emilie Aubert, Emile Daraï, Roman Rouzier, Charles A. Cuenod, Marc Bazot

ABSTRACT

OBJECTIVE: To evaluate the ability of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate malignant from benign adnexal tumours. METHODS: Fifty-six women with 38 malignant and 18 benign tumours underwent MR imaging before surgery for complex adnexal masses. Microvascular parameters were extracted from high temporal resolution DCE-MRI series, using a pharmacokinetic model in the solid tissue of adnexal tumours. These parameters were tissue blood flow (F(T)), blood volume fraction (Vb), permeability-surface area product (PS), interstitial volume fraction (Ve), lag time (Dt) and area under the enhancing curve (rAUC). Area under the receiver operating curve (AUROC) was calculated as a descriptive tool to assess the overall discrimination of parameters. RESULTS: Malignant tumours displayed higher F(T), Vb, rAUC and lower Ve than benign tumours (P < 0.0001, P = 0.0006, P = 0.04 and P = 0.0002, respectively). F(T) was the most relevant factor for discriminating malignant from benign tumours (AUROC = 0.86). Primary ovarian invasive tumours displayed higher F(T) and shorter Dt than borderline tumours. Malignant adnexal tumours with associated peritoneal carcinomatosis at surgery displayed a shorter Dt than those without peritoneal carcinomatosis at surgery (P = 0.01). CONCLUSION: Quantitative DCE-MRI is a feasible and accurate technique to differentiate malignant from benign adnexal tumours and could potentially help oncologists with management decisions. KEY POINTS: Quantitative DCE MR imaging allows accurate differentiation between malignant and benign tumours. Quantitative DCE MRI may help predict peritoneal carcinomatosis associated with ovarian tumors. Quantitative DCE MRI helps distinguish between invasive and borderline primary ovarian tumours. More... »

PAGES

738-745

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-011-2329-6

DOI

http://dx.doi.org/10.1007/s00330-011-2329-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011698029

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22105841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adnexal Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Meglumine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Clearance Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tenon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413483.9", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris, Paris, France", 
            "Laboratoire de recherche en imagerie - UMR 970 INSERM - Universit\u00e9 Rene Descartes, Paris, France", 
            "Service de Radiologie, H\u00f4pital Tenon, 4 rue de la Chine, 75020, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomassin-Naggara", 
        "givenName": "Isabelle", 
        "id": "sg:person.01231773263.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231773263.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Descartes University", 
          "id": "https://www.grid.ac/institutes/grid.10992.33", 
          "name": [
            "Laboratoire de recherche en imagerie - UMR 970 INSERM - Universit\u00e9 Rene Descartes, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balvay", 
        "givenName": "Daniel", 
        "id": "sg:person.0626554766.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626554766.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aubert", 
        "givenName": "Emilie", 
        "id": "sg:person.01346221663.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346221663.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Gynaecology-Obstetrics, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dara\u00ef", 
        "givenName": "Emile", 
        "id": "sg:person.01166567564.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Gynaecology-Obstetrics, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouzier", 
        "givenName": "Roman", 
        "id": "sg:person.01101754741.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Europ\u00e9en Georges-Pompidou", 
          "id": "https://www.grid.ac/institutes/grid.414093.b", 
          "name": [
            "Laboratoire de recherche en imagerie - UMR 970 INSERM - Universit\u00e9 Rene Descartes, Paris, France", 
            "Department of Radiology, H\u00f4pital Europ\u00e9en Georges Pompidou (HEGP), Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuenod", 
        "givenName": "Charles A.", 
        "id": "sg:person.01176634127.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176634127.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique\u2013H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazot", 
        "givenName": "Marc", 
        "id": "sg:person.01157147053.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157147053.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.1880040332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000880106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001612959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(97)00122-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002216722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2481071120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004530729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910170208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006033961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6603515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008061600", 
          "https://doi.org/10.1038/sj.bjc.6603515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6603515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008061600", 
          "https://doi.org/10.1038/sj.bjc.6603515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1621-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008595581", 
          "https://doi.org/10.1007/s00330-009-1621-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1621-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008595581", 
          "https://doi.org/10.1007/s00330-009-1621-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1621-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008595581", 
          "https://doi.org/10.1007/s00330-009-1621-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2392021099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009383841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002142-200402000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011967930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002142-200402000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011967930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7863/jum.1993.12.1.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015501464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0730-725x(03)00186-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026263728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0730-725x(03)00186-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026263728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027512081", 
          "https://doi.org/10.1007/s00330-006-0163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027512081", 
          "https://doi.org/10.1007/s00330-006-0163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.210.1.r99ja46269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029576065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0732-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029839094", 
          "https://doi.org/10.1007/s00330-007-0732-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0732-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029839094", 
          "https://doi.org/10.1007/s00330-007-0732-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031587017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2873-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033245151", 
          "https://doi.org/10.1007/s00330-005-2873-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2873-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033245151", 
          "https://doi.org/10.1007/s00330-005-2873-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2501071929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036152151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/crad.2001.0762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036503156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181c2f0a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037427941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181c2f0a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037427941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e3181c2f0a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037427941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2004.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037952634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199107000-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039176961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199107000-00018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039176961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1299-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490388", 
          "https://doi.org/10.1007/s00330-009-1299-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1299-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040490388", 
          "https://doi.org/10.1007/s00330-009-1299-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1997.537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040576688", 
          "https://doi.org/10.1038/bjc.1997.537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1997.537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040576688", 
          "https://doi.org/10.1038/bjc.1997.537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044101595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdq079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044303974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1469-0705.2000.00287.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045576690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046738505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046738505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0908806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051283014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053376793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/90706205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064570409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.10.4687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.180.5.1801297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074609156", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082900496", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.207.3.9609906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083270828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083390586", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "OBJECTIVE: To evaluate the ability of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate malignant from benign adnexal tumours.\nMETHODS: Fifty-six women with 38 malignant and 18 benign tumours underwent MR imaging before surgery for complex adnexal masses. Microvascular parameters were extracted from high temporal resolution DCE-MRI series, using a pharmacokinetic model in the solid tissue of adnexal tumours. These parameters were tissue blood flow (F(T)), blood volume fraction (Vb), permeability-surface area product (PS), interstitial volume fraction (Ve), lag time (Dt) and area under the enhancing curve (rAUC). Area under the receiver operating curve (AUROC) was calculated as a descriptive tool to assess the overall discrimination of parameters.\nRESULTS: Malignant tumours displayed higher F(T), Vb, rAUC and lower Ve than benign tumours (P < 0.0001, P = 0.0006, P = 0.04 and P = 0.0002, respectively). F(T) was the most relevant factor for discriminating malignant from benign tumours (AUROC = 0.86). Primary ovarian invasive tumours displayed higher F(T) and shorter Dt than borderline tumours. Malignant adnexal tumours with associated peritoneal carcinomatosis at surgery displayed a shorter Dt than those without peritoneal carcinomatosis at surgery (P = 0.01).\nCONCLUSION: Quantitative DCE-MRI is a feasible and accurate technique to differentiate malignant from benign adnexal tumours and could potentially help oncologists with management decisions.\nKEY POINTS: Quantitative DCE MR imaging allows accurate differentiation between malignant and benign tumours. Quantitative DCE MRI may help predict peritoneal carcinomatosis associated with ovarian tumors. Quantitative DCE MRI helps distinguish between invasive and borderline primary ovarian tumours.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-011-2329-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: a preliminary study", 
    "pagination": "738-745", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "37bbfc9c85851b4ee0ee432970745e59c45a3de1763c00f566d630a683493ffd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22105841"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-011-2329-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011698029"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-011-2329-6", 
      "https://app.dimensions.ai/details/publication/pub.1011698029"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-011-2329-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-011-2329-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-011-2329-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-011-2329-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-011-2329-6'


 

This table displays all metadata directly associated to this object as RDF triples.

320 TRIPLES      21 PREDICATES      85 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-011-2329-6 schema:about N024a1a2399d44536973863f6853d0999
2 N07d7210c802c427f851f95c9d3e75057
3 N1ebd70a7611d4598904dbb9d39eb065c
4 N1f4237983c884febb85decd17b94ff93
5 N231e029b97ca471391b92e424f699500
6 N2bdc97f069a74f6c811b69fc4ba3937a
7 N65a1856d5f3f4996af4d8ec4e46c1c96
8 N6aa2ee75dfd64924ad7ac942e5f398ad
9 N6bcabf1cff9042c09edcefed7345636d
10 N79fe972eb8e44895be7cc55ec6805f90
11 N7fccd7187e96478c829276da3e69fda6
12 N856554291ac24384b0a54fb5c2f467ab
13 Nbf6c228913ae4dbeadef65a31b57a3b5
14 Nc4f872dfad2343709feca67c2340429c
15 Nc5d341fb91934076899b913880fe1a30
16 Ncda5a170e3bc468b94cf726f7adddb7c
17 Nd5c0935f79b042778de08bfd2488f157
18 Ndc58b890e8d64b3b9ea4ac464f8ff2b7
19 Ndeb566fce8a340279b5789592443f31a
20 Ne09a6da6dfc643caa185d4a3796456c9
21 anzsrc-for:11
22 anzsrc-for:1103
23 schema:author N98cb32b6201147f6863cdbecbddb501e
24 schema:citation sg:pub.10.1007/s00330-005-2873-z
25 sg:pub.10.1007/s00330-006-0163-z
26 sg:pub.10.1007/s00330-007-0732-9
27 sg:pub.10.1007/s00330-009-1299-4
28 sg:pub.10.1007/s00330-009-1621-1
29 sg:pub.10.1038/bjc.1997.537
30 sg:pub.10.1038/sj.bjc.6603515
31 https://app.dimensions.ai/details/publication/pub.1074609156
32 https://app.dimensions.ai/details/publication/pub.1082900496
33 https://app.dimensions.ai/details/publication/pub.1083390586
34 https://doi.org/10.1002/jmri.10176
35 https://doi.org/10.1002/jmri.1880040332
36 https://doi.org/10.1002/jmri.21377
37 https://doi.org/10.1002/mrm.1910170208
38 https://doi.org/10.1002/mrm.20650
39 https://doi.org/10.1002/nbm.732
40 https://doi.org/10.1016/j.ygyno.2004.05.056
41 https://doi.org/10.1016/s0720-048x(97)00122-8
42 https://doi.org/10.1016/s0730-725x(03)00186-3
43 https://doi.org/10.1046/j.1469-0705.2000.00287.x
44 https://doi.org/10.1053/crad.2001.0762
45 https://doi.org/10.1056/nejmoa0908806
46 https://doi.org/10.1093/annonc/mdq079
47 https://doi.org/10.1097/00002142-200402000-00005
48 https://doi.org/10.1097/00004728-199107000-00018
49 https://doi.org/10.1097/rct.0b013e3181c2f0a2
50 https://doi.org/10.1148/radiol.10100751
51 https://doi.org/10.1148/radiol.2392021099
52 https://doi.org/10.1148/radiol.2481071120
53 https://doi.org/10.1148/radiol.2501071929
54 https://doi.org/10.1148/radiology.207.3.9609906
55 https://doi.org/10.1148/radiology.210.1.r99ja46269
56 https://doi.org/10.1259/bjr/90706205
57 https://doi.org/10.2214/ajr.10.4687
58 https://doi.org/10.2214/ajr.180.5.1801297
59 https://doi.org/10.7863/jum.1993.12.1.41
60 schema:datePublished 2012-04
61 schema:datePublishedReg 2012-04-01
62 schema:description OBJECTIVE: To evaluate the ability of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate malignant from benign adnexal tumours. METHODS: Fifty-six women with 38 malignant and 18 benign tumours underwent MR imaging before surgery for complex adnexal masses. Microvascular parameters were extracted from high temporal resolution DCE-MRI series, using a pharmacokinetic model in the solid tissue of adnexal tumours. These parameters were tissue blood flow (F(T)), blood volume fraction (Vb), permeability-surface area product (PS), interstitial volume fraction (Ve), lag time (Dt) and area under the enhancing curve (rAUC). Area under the receiver operating curve (AUROC) was calculated as a descriptive tool to assess the overall discrimination of parameters. RESULTS: Malignant tumours displayed higher F(T), Vb, rAUC and lower Ve than benign tumours (P < 0.0001, P = 0.0006, P = 0.04 and P = 0.0002, respectively). F(T) was the most relevant factor for discriminating malignant from benign tumours (AUROC = 0.86). Primary ovarian invasive tumours displayed higher F(T) and shorter Dt than borderline tumours. Malignant adnexal tumours with associated peritoneal carcinomatosis at surgery displayed a shorter Dt than those without peritoneal carcinomatosis at surgery (P = 0.01). CONCLUSION: Quantitative DCE-MRI is a feasible and accurate technique to differentiate malignant from benign adnexal tumours and could potentially help oncologists with management decisions. KEY POINTS: Quantitative DCE MR imaging allows accurate differentiation between malignant and benign tumours. Quantitative DCE MRI may help predict peritoneal carcinomatosis associated with ovarian tumors. Quantitative DCE MRI helps distinguish between invasive and borderline primary ovarian tumours.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree false
66 schema:isPartOf N9bc92bb40c9e49aca36358df455a7f91
67 Neccf8832380447ea8a8c55e34fc1464e
68 sg:journal.1289120
69 schema:name Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: a preliminary study
70 schema:pagination 738-745
71 schema:productId N327a9baf0a89473b83873fb04acc1dd4
72 N64820fc508b1479b9d9cd020ca279ae8
73 N652dfafdf64e40acaa02d0bde11bb9d3
74 N790a04824f954c4191d650ec7dd4c783
75 Nfa24de86f2af4b5c9a6487590adbcb7e
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011698029
77 https://doi.org/10.1007/s00330-011-2329-6
78 schema:sdDatePublished 2019-04-10T15:51
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N317844903bf6459c9b719098466dac5b
81 schema:url http://link.springer.com/10.1007%2Fs00330-011-2329-6
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N02196c6d63204a6c8f25e11d458a837d rdf:first sg:person.01346221663.53
86 rdf:rest N3db8dd3a02a445d78c42334700b73f7e
87 N024a1a2399d44536973863f6853d0999 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Meglumine
89 rdf:type schema:DefinedTerm
90 N07d7210c802c427f851f95c9d3e75057 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Metabolic Clearance Rate
92 rdf:type schema:DefinedTerm
93 N1ebd70a7611d4598904dbb9d39eb065c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Reproducibility of Results
95 rdf:type schema:DefinedTerm
96 N1f4237983c884febb85decd17b94ff93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Humans
98 rdf:type schema:DefinedTerm
99 N231e029b97ca471391b92e424f699500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Aged
101 rdf:type schema:DefinedTerm
102 N2bdc97f069a74f6c811b69fc4ba3937a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Adnexal Diseases
104 rdf:type schema:DefinedTerm
105 N317844903bf6459c9b719098466dac5b schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N327a9baf0a89473b83873fb04acc1dd4 schema:name nlm_unique_id
108 schema:value 9114774
109 rdf:type schema:PropertyValue
110 N3db8dd3a02a445d78c42334700b73f7e rdf:first sg:person.01166567564.74
111 rdf:rest Nd757bd4f6a4a44259485627f352b8ee2
112 N64820fc508b1479b9d9cd020ca279ae8 schema:name readcube_id
113 schema:value 37bbfc9c85851b4ee0ee432970745e59c45a3de1763c00f566d630a683493ffd
114 rdf:type schema:PropertyValue
115 N652dfafdf64e40acaa02d0bde11bb9d3 schema:name doi
116 schema:value 10.1007/s00330-011-2329-6
117 rdf:type schema:PropertyValue
118 N65a1856d5f3f4996af4d8ec4e46c1c96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Algorithms
120 rdf:type schema:DefinedTerm
121 N6aa2ee75dfd64924ad7ac942e5f398ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Adult
123 rdf:type schema:DefinedTerm
124 N6bcabf1cff9042c09edcefed7345636d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Organometallic Compounds
126 rdf:type schema:DefinedTerm
127 N790a04824f954c4191d650ec7dd4c783 schema:name dimensions_id
128 schema:value pub.1011698029
129 rdf:type schema:PropertyValue
130 N79fe972eb8e44895be7cc55ec6805f90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Contrast Media
132 rdf:type schema:DefinedTerm
133 N7fccd7187e96478c829276da3e69fda6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Diagnosis, Differential
135 rdf:type schema:DefinedTerm
136 N856554291ac24384b0a54fb5c2f467ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Magnetic Resonance Imaging
138 rdf:type schema:DefinedTerm
139 N98cb32b6201147f6863cdbecbddb501e rdf:first sg:person.01231773263.15
140 rdf:rest Nc3758d59afad494787ba97e2ad7e37b5
141 N9bc92bb40c9e49aca36358df455a7f91 schema:issueNumber 4
142 rdf:type schema:PublicationIssue
143 Nbd2c92dc957a4e84bb643b9d8e0d8193 schema:name Department of Radiology, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
144 rdf:type schema:Organization
145 Nbf6c228913ae4dbeadef65a31b57a3b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Image Interpretation, Computer-Assisted
147 rdf:type schema:DefinedTerm
148 Nc0289fad1b0748ddb3da930590cf8457 rdf:first sg:person.01176634127.48
149 rdf:rest Ne387c5618a7d4b558c7fc52eafed971c
150 Nc2cdafe7f6304554a3e07b8b6e175976 schema:name Department of Radiology, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
151 rdf:type schema:Organization
152 Nc3758d59afad494787ba97e2ad7e37b5 rdf:first sg:person.0626554766.83
153 rdf:rest N02196c6d63204a6c8f25e11d458a837d
154 Nc4f872dfad2343709feca67c2340429c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Ovarian Neoplasms
156 rdf:type schema:DefinedTerm
157 Nc5d341fb91934076899b913880fe1a30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Middle Aged
159 rdf:type schema:DefinedTerm
160 Ncda5a170e3bc468b94cf726f7adddb7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Female
162 rdf:type schema:DefinedTerm
163 Nd5c0935f79b042778de08bfd2488f157 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Sensitivity and Specificity
165 rdf:type schema:DefinedTerm
166 Nd757bd4f6a4a44259485627f352b8ee2 rdf:first sg:person.01101754741.17
167 rdf:rest Nc0289fad1b0748ddb3da930590cf8457
168 Ndc58b890e8d64b3b9ea4ac464f8ff2b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Pilot Projects
170 rdf:type schema:DefinedTerm
171 Ndeb566fce8a340279b5789592443f31a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Image Enhancement
173 rdf:type schema:DefinedTerm
174 Ne09a6da6dfc643caa185d4a3796456c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Aged, 80 and over
176 rdf:type schema:DefinedTerm
177 Ne387c5618a7d4b558c7fc52eafed971c rdf:first sg:person.01157147053.12
178 rdf:rest rdf:nil
179 Ne9802d1d60394e968b206af71de816b1 schema:name Department of Gynaecology-Obstetrics, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
180 rdf:type schema:Organization
181 Neccf8832380447ea8a8c55e34fc1464e schema:volumeNumber 22
182 rdf:type schema:PublicationVolume
183 Nfa24de86f2af4b5c9a6487590adbcb7e schema:name pubmed_id
184 schema:value 22105841
185 rdf:type schema:PropertyValue
186 Nff80c0a2f94b422ba9ce3428ee45c3c3 schema:name Department of Gynaecology-Obstetrics, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
187 rdf:type schema:Organization
188 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
189 schema:name Medical and Health Sciences
190 rdf:type schema:DefinedTerm
191 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
192 schema:name Clinical Sciences
193 rdf:type schema:DefinedTerm
194 sg:journal.1289120 schema:issn 0938-7994
195 1432-1084
196 schema:name European Radiology
197 rdf:type schema:Periodical
198 sg:person.01101754741.17 schema:affiliation Ne9802d1d60394e968b206af71de816b1
199 schema:familyName Rouzier
200 schema:givenName Roman
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17
202 rdf:type schema:Person
203 sg:person.01157147053.12 schema:affiliation Nbd2c92dc957a4e84bb643b9d8e0d8193
204 schema:familyName Bazot
205 schema:givenName Marc
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157147053.12
207 rdf:type schema:Person
208 sg:person.01166567564.74 schema:affiliation Nff80c0a2f94b422ba9ce3428ee45c3c3
209 schema:familyName Daraï
210 schema:givenName Emile
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74
212 rdf:type schema:Person
213 sg:person.01176634127.48 schema:affiliation https://www.grid.ac/institutes/grid.414093.b
214 schema:familyName Cuenod
215 schema:givenName Charles A.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176634127.48
217 rdf:type schema:Person
218 sg:person.01231773263.15 schema:affiliation https://www.grid.ac/institutes/grid.413483.9
219 schema:familyName Thomassin-Naggara
220 schema:givenName Isabelle
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231773263.15
222 rdf:type schema:Person
223 sg:person.01346221663.53 schema:affiliation Nc2cdafe7f6304554a3e07b8b6e175976
224 schema:familyName Aubert
225 schema:givenName Emilie
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346221663.53
227 rdf:type schema:Person
228 sg:person.0626554766.83 schema:affiliation https://www.grid.ac/institutes/grid.10992.33
229 schema:familyName Balvay
230 schema:givenName Daniel
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626554766.83
232 rdf:type schema:Person
233 sg:pub.10.1007/s00330-005-2873-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033245151
234 https://doi.org/10.1007/s00330-005-2873-z
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/s00330-006-0163-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027512081
237 https://doi.org/10.1007/s00330-006-0163-z
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/s00330-007-0732-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029839094
240 https://doi.org/10.1007/s00330-007-0732-9
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/s00330-009-1299-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040490388
243 https://doi.org/10.1007/s00330-009-1299-4
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/s00330-009-1621-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008595581
246 https://doi.org/10.1007/s00330-009-1621-1
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/bjc.1997.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040576688
249 https://doi.org/10.1038/bjc.1997.537
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/sj.bjc.6603515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008061600
252 https://doi.org/10.1038/sj.bjc.6603515
253 rdf:type schema:CreativeWork
254 https://app.dimensions.ai/details/publication/pub.1074609156 schema:CreativeWork
255 https://app.dimensions.ai/details/publication/pub.1082900496 schema:CreativeWork
256 https://app.dimensions.ai/details/publication/pub.1083390586 schema:CreativeWork
257 https://doi.org/10.1002/jmri.10176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031587017
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1002/jmri.1880040332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000880106
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1002/jmri.21377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053376793
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1002/mrm.1910170208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006033961
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1002/mrm.20650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046738505
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1002/nbm.732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044101595
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/j.ygyno.2004.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037952634
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1016/s0720-048x(97)00122-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002216722
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1016/s0730-725x(03)00186-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026263728
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1046/j.1469-0705.2000.00287.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045576690
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1053/crad.2001.0762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036503156
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1056/nejmoa0908806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051283014
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1093/annonc/mdq079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044303974
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1097/00002142-200402000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011967930
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1097/00004728-199107000-00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039176961
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1097/rct.0b013e3181c2f0a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037427941
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1148/radiol.10100751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001612959
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1148/radiol.2392021099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009383841
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1148/radiol.2481071120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004530729
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1148/radiol.2501071929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036152151
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1148/radiology.207.3.9609906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083270828
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1148/radiology.210.1.r99ja46269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029576065
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1259/bjr/90706205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064570409
302 rdf:type schema:CreativeWork
303 https://doi.org/10.2214/ajr.10.4687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300989
304 rdf:type schema:CreativeWork
305 https://doi.org/10.2214/ajr.180.5.1801297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325422
306 rdf:type schema:CreativeWork
307 https://doi.org/10.7863/jum.1993.12.1.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015501464
308 rdf:type schema:CreativeWork
309 https://www.grid.ac/institutes/grid.10992.33 schema:alternateName Paris Descartes University
310 schema:name Laboratoire de recherche en imagerie - UMR 970 INSERM - Université Rene Descartes, Paris, France
311 rdf:type schema:Organization
312 https://www.grid.ac/institutes/grid.413483.9 schema:alternateName Tenon Hospital
313 schema:name Department of Radiology, Hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
314 Laboratoire de recherche en imagerie - UMR 970 INSERM - Université Rene Descartes, Paris, France
315 Service de Radiologie, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France
316 rdf:type schema:Organization
317 https://www.grid.ac/institutes/grid.414093.b schema:alternateName Hôpital Européen Georges-Pompidou
318 schema:name Department of Radiology, Hôpital Européen Georges Pompidou (HEGP), Paris, France
319 Laboratoire de recherche en imagerie - UMR 970 INSERM - Université Rene Descartes, Paris, France
320 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...