Usefulness of FDG PET/CT in determining benign from malignant endobronchial obstruction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-11-27

AUTHORS

Arthur Cho, Jin Hur, Won Jun Kang, Ho Jin Cho, Jae-hoon Lee, Mijin Yun, Jong Doo Lee

ABSTRACT

ObjectiveTo evaluate the usefulness of FDG PET/CT to differentiate malignant endobronchial lesions with distal atelectasis from benign bronchial stenosis.MethodsThis retrospective study reviewed 84 patients who underwent contrast-enhanced chest CT and then PET/CT and had histological (n = 81) or follow-up imaging (n = 3) confirmation. Two chest radiologists reviewed initial chest CT and determined endobronchial lesions to be malignant or benign. Two nuclear medicine physicians reviewed PET/CT for FDG uptake at the obstruction site and measured SUV. Malignancy was considered when increased FDG uptake was seen in the obstruction site, regardless of FDG within the atelectatic lung.ResultsThe sensitivity, specificity and accuracy of chest CT was 95%, 48% and 84%, compared with 95%, 91% and 94% for PET/CT. Benign obstructive lesions showed statistically lower FDG uptake than malignant obstructions (benign SUV 2.5 ± 0.84; malignant SUV 11.8 ± 5.95, p < 0.001). ROC analysis showed an SUV cut-off value of 3.4 with highest sensitivity of 94% and specificity of 91%.ConclusionIncreased FDG PET/CT uptake at the obstruction site indicates a high probability of malignancy, while benign lesions show low FDG uptake. Careful evaluation of FDG uptake pattern at the obstruction site is helpful in the differentiation between benign and malignant endobronchial lesions. More... »

PAGES

1077-1087

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-010-2006-1

DOI

http://dx.doi.org/10.1007/s00330-010-2006-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000184816

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21113598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Constriction, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Negative Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Atelectasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413046.4", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Arthur", 
        "id": "sg:person.01236220156.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236220156.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Yonsei University Health System, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413046.4", 
          "name": [
            "Department of Radiology, Yonsei University Health System, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hur", 
        "givenName": "Jin", 
        "id": "sg:person.0631275763.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413046.4", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Won Jun", 
        "id": "sg:person.01077644577.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077644577.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413046.4", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Ho Jin", 
        "id": "sg:person.01005371425.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005371425.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413046.4", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jae-hoon", 
        "id": "sg:person.01110230642.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110230642.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413046.4", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yun", 
        "givenName": "Mijin", 
        "id": "sg:person.0773264404.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773264404.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413046.4", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jong Doo", 
        "id": "sg:person.01362567540.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362567540.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-006-0073-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038654725", 
          "https://doi.org/10.1007/s00259-006-0073-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0350-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048905170", 
          "https://doi.org/10.1007/s00330-006-0350-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11-27", 
    "datePublishedReg": "2010-11-27", 
    "description": "ObjectiveTo evaluate the usefulness of FDG PET/CT to differentiate malignant endobronchial lesions with distal atelectasis from benign bronchial stenosis.MethodsThis retrospective study reviewed 84 patients who underwent contrast-enhanced chest CT and then PET/CT and had histological (n\u2009=\u200981) or follow-up imaging (n\u2009=\u20093) confirmation. Two chest radiologists reviewed initial chest CT and determined endobronchial lesions to be malignant or benign. Two nuclear medicine physicians reviewed PET/CT for FDG uptake at the obstruction site and measured SUV. Malignancy was considered when increased FDG uptake was seen in the obstruction site, regardless of FDG within the atelectatic lung.ResultsThe sensitivity, specificity and accuracy of chest CT was 95%, 48% and 84%, compared with 95%, 91% and 94% for PET/CT. Benign obstructive lesions showed statistically lower FDG uptake than malignant obstructions (benign SUV 2.5\u2009\u00b1\u20090.84; malignant SUV 11.8\u2009\u00b1\u20095.95, p\u2009<\u20090.001). ROC analysis showed an SUV cut-off value of 3.4 with highest sensitivity of 94% and specificity of 91%.ConclusionIncreased FDG PET/CT uptake at the obstruction site indicates a high probability of malignancy, while benign lesions show low FDG uptake. Careful evaluation of FDG uptake pattern at the obstruction site is helpful in the differentiation between benign and malignant endobronchial lesions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-010-2006-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "PET/CT", 
      "FDG PET/CT", 
      "malignant endobronchial lesions", 
      "low FDG uptake", 
      "FDG uptake", 
      "obstruction site", 
      "endobronchial lesions", 
      "chest CT", 
      "FDG PET/CT uptake", 
      "contrast-enhanced chest CT", 
      "PET/CT uptake", 
      "initial chest CT", 
      "benign obstructive lesions", 
      "malignant endobronchial obstruction", 
      "FDG uptake pattern", 
      "MethodsThis retrospective study", 
      "benign bronchial stenosis", 
      "nuclear medicine physicians", 
      "distal atelectasis", 
      "SUV cut", 
      "endobronchial obstruction", 
      "obstructive lesions", 
      "malignant obstruction", 
      "bronchial stenosis", 
      "retrospective study", 
      "atelectatic lung", 
      "CT uptake", 
      "medicine physicians", 
      "benign lesions", 
      "ResultsThe sensitivity", 
      "lesions", 
      "ROC analysis", 
      "chest radiologists", 
      "CT", 
      "careful evaluation", 
      "malignancy", 
      "obstruction", 
      "uptake patterns", 
      "uptake", 
      "atelectasis", 
      "stenosis", 
      "patients", 
      "lung", 
      "ObjectiveTo", 
      "FDG", 
      "specificity", 
      "physicians", 
      "radiologists", 
      "SUV", 
      "sensitivity", 
      "high probability", 
      "usefulness", 
      "confirmation", 
      "sites", 
      "high sensitivity", 
      "differentiation", 
      "evaluation", 
      "study", 
      "patterns", 
      "analysis", 
      "cut", 
      "values", 
      "probability", 
      "accuracy"
    ], 
    "name": "Usefulness of FDG PET/CT in determining benign from malignant endobronchial obstruction", 
    "pagination": "1077-1087", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000184816"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-010-2006-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21113598"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-010-2006-1", 
      "https://app.dimensions.ai/details/publication/pub.1000184816"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-010-2006-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-2006-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-2006-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-2006-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-2006-1'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      110 URIs      100 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-010-2006-1 schema:about N05ba04fb7cea4535bec6c5084eab9f34
2 N10d07d8437f848fd8fa2ff173e0c330c
3 N1aa8c2557983419fb6284169b0b31b5a
4 N416fd39ea8ef43bdaddb1b7660730043
5 N43f476f3109b4ef9bbe28e1e028989b1
6 N44b0edf3f9f747a4be3220793a725e92
7 N4a3cb0f8156f4d34a9c8db5dba17a029
8 N65dd35a5001442d08dd0c7e25410ebf7
9 N66f7afba7a3f41a2b8fef39be9cb3bbc
10 N830c2134b8cb4db5abf3c3a0d4b37756
11 N955feb6355f9484da2e403ef5b3e1464
12 N98dfe1e9e8144912a7e757324032640d
13 Na80c17982a4643e29a68512198e0b648
14 Nb10af95a6c674a2b8c5e890ab0e51402
15 Nc237386e123b4cac9b09d1dc90400cee
16 Nd18170bb12b24d24a37b3c4f79c8ca31
17 Nd2a602cc9b224521b7f3c7edaae6ea62
18 Nd6416f6199114139a88df78f161322dd
19 Nec53968393434965a568e39731b3bb0b
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author N6294a1648f594497967d2e5a69a369fb
23 schema:citation sg:pub.10.1007/s00259-006-0073-y
24 sg:pub.10.1007/s00330-006-0350-y
25 schema:datePublished 2010-11-27
26 schema:datePublishedReg 2010-11-27
27 schema:description ObjectiveTo evaluate the usefulness of FDG PET/CT to differentiate malignant endobronchial lesions with distal atelectasis from benign bronchial stenosis.MethodsThis retrospective study reviewed 84 patients who underwent contrast-enhanced chest CT and then PET/CT and had histological (n = 81) or follow-up imaging (n = 3) confirmation. Two chest radiologists reviewed initial chest CT and determined endobronchial lesions to be malignant or benign. Two nuclear medicine physicians reviewed PET/CT for FDG uptake at the obstruction site and measured SUV. Malignancy was considered when increased FDG uptake was seen in the obstruction site, regardless of FDG within the atelectatic lung.ResultsThe sensitivity, specificity and accuracy of chest CT was 95%, 48% and 84%, compared with 95%, 91% and 94% for PET/CT. Benign obstructive lesions showed statistically lower FDG uptake than malignant obstructions (benign SUV 2.5 ± 0.84; malignant SUV 11.8 ± 5.95, p < 0.001). ROC analysis showed an SUV cut-off value of 3.4 with highest sensitivity of 94% and specificity of 91%.ConclusionIncreased FDG PET/CT uptake at the obstruction site indicates a high probability of malignancy, while benign lesions show low FDG uptake. Careful evaluation of FDG uptake pattern at the obstruction site is helpful in the differentiation between benign and malignant endobronchial lesions.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf N769a0c7d4f6c4d09a26c6a2a6f0f0a4d
31 Nb3a65849e30c448498267619411a1e14
32 sg:journal.1289120
33 schema:keywords CT
34 CT uptake
35 FDG
36 FDG PET/CT
37 FDG PET/CT uptake
38 FDG uptake
39 FDG uptake pattern
40 MethodsThis retrospective study
41 ObjectiveTo
42 PET/CT
43 PET/CT uptake
44 ROC analysis
45 ResultsThe sensitivity
46 SUV
47 SUV cut
48 accuracy
49 analysis
50 atelectasis
51 atelectatic lung
52 benign bronchial stenosis
53 benign lesions
54 benign obstructive lesions
55 bronchial stenosis
56 careful evaluation
57 chest CT
58 chest radiologists
59 confirmation
60 contrast-enhanced chest CT
61 cut
62 differentiation
63 distal atelectasis
64 endobronchial lesions
65 endobronchial obstruction
66 evaluation
67 high probability
68 high sensitivity
69 initial chest CT
70 lesions
71 low FDG uptake
72 lung
73 malignancy
74 malignant endobronchial lesions
75 malignant endobronchial obstruction
76 malignant obstruction
77 medicine physicians
78 nuclear medicine physicians
79 obstruction
80 obstruction site
81 obstructive lesions
82 patients
83 patterns
84 physicians
85 probability
86 radiologists
87 retrospective study
88 sensitivity
89 sites
90 specificity
91 stenosis
92 study
93 uptake
94 uptake patterns
95 usefulness
96 values
97 schema:name Usefulness of FDG PET/CT in determining benign from malignant endobronchial obstruction
98 schema:pagination 1077-1087
99 schema:productId N253976e20fd446b3b878f49015acb58c
100 N3b9eea733d644df18cfa412b5576118a
101 Na0c1683225f64620a4516146f99817ff
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000184816
103 https://doi.org/10.1007/s00330-010-2006-1
104 schema:sdDatePublished 2022-09-02T15:53
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N93270d7f9c164241a62b0ab0bc4d5b74
107 schema:url https://doi.org/10.1007/s00330-010-2006-1
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N05ba04fb7cea4535bec6c5084eab9f34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Probability
113 rdf:type schema:DefinedTerm
114 N10d07d8437f848fd8fa2ff173e0c330c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Lung Neoplasms
116 rdf:type schema:DefinedTerm
117 N1aa8c2557983419fb6284169b0b31b5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Constriction, Pathologic
119 rdf:type schema:DefinedTerm
120 N253976e20fd446b3b878f49015acb58c schema:name pubmed_id
121 schema:value 21113598
122 rdf:type schema:PropertyValue
123 N37e8f207b2a14e5ba2e106d1959ff85b rdf:first sg:person.01110230642.69
124 rdf:rest N704b8abae2bb4dfc8554a1fa83d69cab
125 N3b9eea733d644df18cfa412b5576118a schema:name doi
126 schema:value 10.1007/s00330-010-2006-1
127 rdf:type schema:PropertyValue
128 N416fd39ea8ef43bdaddb1b7660730043 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Reproducibility of Results
130 rdf:type schema:DefinedTerm
131 N43f476f3109b4ef9bbe28e1e028989b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Aged
133 rdf:type schema:DefinedTerm
134 N44b0edf3f9f747a4be3220793a725e92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Middle Aged
136 rdf:type schema:DefinedTerm
137 N4a3cb0f8156f4d34a9c8db5dba17a029 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Adult
139 rdf:type schema:DefinedTerm
140 N6294a1648f594497967d2e5a69a369fb rdf:first sg:person.01236220156.96
141 rdf:rest Ndf525558d191422ba45c4420e831a3de
142 N65dd35a5001442d08dd0c7e25410ebf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Aged, 80 and over
144 rdf:type schema:DefinedTerm
145 N66f7afba7a3f41a2b8fef39be9cb3bbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Retrospective Studies
147 rdf:type schema:DefinedTerm
148 N704b8abae2bb4dfc8554a1fa83d69cab rdf:first sg:person.0773264404.13
149 rdf:rest N9a2b1b1afbed4239a1205ac3ff67774e
150 N769a0c7d4f6c4d09a26c6a2a6f0f0a4d schema:volumeNumber 21
151 rdf:type schema:PublicationVolume
152 N830c2134b8cb4db5abf3c3a0d4b37756 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name False Negative Reactions
154 rdf:type schema:DefinedTerm
155 N886e7a857edc46d4b855c2bb22b8f8c1 rdf:first sg:person.01005371425.54
156 rdf:rest N37e8f207b2a14e5ba2e106d1959ff85b
157 N93270d7f9c164241a62b0ab0bc4d5b74 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 N955feb6355f9484da2e403ef5b3e1464 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Male
161 rdf:type schema:DefinedTerm
162 N98dfe1e9e8144912a7e757324032640d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Contrast Media
164 rdf:type schema:DefinedTerm
165 N9a2b1b1afbed4239a1205ac3ff67774e rdf:first sg:person.01362567540.45
166 rdf:rest rdf:nil
167 Na0c1683225f64620a4516146f99817ff schema:name dimensions_id
168 schema:value pub.1000184816
169 rdf:type schema:PropertyValue
170 Na12318c40fe7498bbb45737b15bb1e4c rdf:first sg:person.01077644577.56
171 rdf:rest N886e7a857edc46d4b855c2bb22b8f8c1
172 Na80c17982a4643e29a68512198e0b648 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Sensitivity and Specificity
174 rdf:type schema:DefinedTerm
175 Nb10af95a6c674a2b8c5e890ab0e51402 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Female
177 rdf:type schema:DefinedTerm
178 Nb3a65849e30c448498267619411a1e14 schema:issueNumber 5
179 rdf:type schema:PublicationIssue
180 Nc237386e123b4cac9b09d1dc90400cee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Tomography, X-Ray Computed
182 rdf:type schema:DefinedTerm
183 Nd18170bb12b24d24a37b3c4f79c8ca31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Pulmonary Atelectasis
185 rdf:type schema:DefinedTerm
186 Nd2a602cc9b224521b7f3c7edaae6ea62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Fluorodeoxyglucose F18
188 rdf:type schema:DefinedTerm
189 Nd6416f6199114139a88df78f161322dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Positron-Emission Tomography
191 rdf:type schema:DefinedTerm
192 Ndf525558d191422ba45c4420e831a3de rdf:first sg:person.0631275763.56
193 rdf:rest Na12318c40fe7498bbb45737b15bb1e4c
194 Nec53968393434965a568e39731b3bb0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Humans
196 rdf:type schema:DefinedTerm
197 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
198 schema:name Medical and Health Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
201 schema:name Clinical Sciences
202 rdf:type schema:DefinedTerm
203 sg:journal.1289120 schema:issn 0938-7994
204 1432-1084
205 schema:name European Radiology
206 schema:publisher Springer Nature
207 rdf:type schema:Periodical
208 sg:person.01005371425.54 schema:affiliation grid-institutes:grid.413046.4
209 schema:familyName Cho
210 schema:givenName Ho Jin
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005371425.54
212 rdf:type schema:Person
213 sg:person.01077644577.56 schema:affiliation grid-institutes:grid.413046.4
214 schema:familyName Kang
215 schema:givenName Won Jun
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077644577.56
217 rdf:type schema:Person
218 sg:person.01110230642.69 schema:affiliation grid-institutes:grid.413046.4
219 schema:familyName Lee
220 schema:givenName Jae-hoon
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110230642.69
222 rdf:type schema:Person
223 sg:person.01236220156.96 schema:affiliation grid-institutes:grid.413046.4
224 schema:familyName Cho
225 schema:givenName Arthur
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236220156.96
227 rdf:type schema:Person
228 sg:person.01362567540.45 schema:affiliation grid-institutes:grid.413046.4
229 schema:familyName Lee
230 schema:givenName Jong Doo
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362567540.45
232 rdf:type schema:Person
233 sg:person.0631275763.56 schema:affiliation grid-institutes:grid.413046.4
234 schema:familyName Hur
235 schema:givenName Jin
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56
237 rdf:type schema:Person
238 sg:person.0773264404.13 schema:affiliation grid-institutes:grid.413046.4
239 schema:familyName Yun
240 schema:givenName Mijin
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773264404.13
242 rdf:type schema:Person
243 sg:pub.10.1007/s00259-006-0073-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038654725
244 https://doi.org/10.1007/s00259-006-0073-y
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s00330-006-0350-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048905170
247 https://doi.org/10.1007/s00330-006-0350-y
248 rdf:type schema:CreativeWork
249 grid-institutes:grid.413046.4 schema:alternateName Department of Radiology, Yonsei University Health System, Seoul, South Korea
250 Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea
251 schema:name Department of Radiology, Yonsei University Health System, Seoul, South Korea
252 Division of Nuclear Medicine, Department of Radiology, Yonsei University Health System, 134 Shinchon-dong, Seodaemoon-ku, 120-752, Seoul, South Korea
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...