Diagnostic performance of 320-detector CT coronary angiography in patients with atrial fibrillation: preliminary results View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-05

AUTHORS

Lei Xu, Lin Yang, Zhanming Fan, Wei Yu, Biao Lv, Zhaoqi Zhang

ABSTRACT

OBJECTIVE: To evaluate the feasibility, diagnostic accuracy, and radiation dose of CT coronary angiography (CTCA) in patients with atrial fibrillation (AF) using 320-detector CT. METHODS: Thirty-seven patients with persistent AF and suspected coronary artery disease (CAD) were enrolled. All patients underwent both 320-detector CTCA and conventional coronary angiography (CCA). CT image quality and the presence of significant (≥ 50%) stenosis were evaluated by two radiologists blinded to the results of CCA. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated using CCA as the reference standard. Differences in detection of coronary artery stenosis between 320-detector CTCA and CCA were evaluated with McNemar's test. Patient radiation dose was calculated by multiplying dose length product by conversion coefficient of 0.017. RESULTS: In total 474 evaluated coronary segments, 459 (96.8%) segments were diagnostically evaluable. On per-segment analysis, sensitivity, specificity, PPV and NPV were 90.0% (18 of 20), 99.3% (436 of 439), 85.7% (18 of 21) and 99.5% (436 of 438). No significant difference was found between 320-detector CTCA and CCA on the detection of significant stenosis (P = 1.000). Effective doses of 320-detector CTCA was 13.0 ± 4.7 mSv. CONCLUSION: 320-detector CTCA is feasible and accurate in excluding CAD in patients with AF. More... »

PAGES

936-943

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-010-1987-0

DOI

http://dx.doi.org/10.1007/s00330-010-1987-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024639060

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21153826


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atrial Fibrillation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Constriction, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lei", 
        "id": "sg:person.0713154075.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Lin", 
        "id": "sg:person.0576725475.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576725475.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhanming", 
        "id": "sg:person.01017406664.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017406664.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Biao", 
        "id": "sg:person.0602566575.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602566575.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhaoqi", 
        "id": "sg:person.014030237157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1056/nejmra072149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001923893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002160027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9347-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010389969", 
          "https://doi.org/10.1007/s10554-008-9347-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9347-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010389969", 
          "https://doi.org/10.1007/s10554-008-9347-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002512-200219110-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011505105", 
          "https://doi.org/10.2165/00002512-200219110-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00002512-200219110-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011505105", 
          "https://doi.org/10.2165/00002512-200219110-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181948b05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013344559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181948b05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013344559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2006.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014454875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2482072192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024935051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9308-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026084106", 
          "https://doi.org/10.1007/s10554-008-9308-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2009.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027354141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2008.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032209600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-0041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033021022", 
          "https://doi.org/10.1007/s00330-005-0041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-0041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033021022", 
          "https://doi.org/10.1007/s00330-005-0041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0474-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035473439", 
          "https://doi.org/10.1007/s00330-006-0474-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0474-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035473439", 
          "https://doi.org/10.1007/s00330-006-0474-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.298.3.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.03.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048922604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2453070094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050231496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2441060004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050679400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.106.177292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052097088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2442061218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053343799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.859280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053471912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.51.4.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063335684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.2319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.184.5.01841413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05", 
    "datePublishedReg": "2011-05-01", 
    "description": "OBJECTIVE: To evaluate the feasibility, diagnostic accuracy, and radiation dose of CT coronary angiography (CTCA) in patients with atrial fibrillation (AF) using 320-detector CT.\nMETHODS: Thirty-seven patients with persistent AF and suspected coronary artery disease (CAD) were enrolled. All patients underwent both 320-detector CTCA and conventional coronary angiography (CCA). CT image quality and the presence of significant (\u2265 50%) stenosis were evaluated by two radiologists blinded to the results of CCA. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated using CCA as the reference standard. Differences in detection of coronary artery stenosis between 320-detector CTCA and CCA were evaluated with McNemar's test. Patient radiation dose was calculated by multiplying dose length product by conversion coefficient of 0.017.\nRESULTS: In total 474 evaluated coronary segments, 459 (96.8%) segments were diagnostically evaluable. On per-segment analysis, sensitivity, specificity, PPV and NPV were 90.0% (18 of 20), 99.3% (436 of 439), 85.7% (18 of 21) and 99.5% (436 of 438). No significant difference was found between 320-detector CTCA and CCA on the detection of significant stenosis (P = 1.000). Effective doses of 320-detector CTCA was 13.0 \u00b1 4.7 mSv.\nCONCLUSION: 320-detector CTCA is feasible and accurate in excluding CAD in patients with AF.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-010-1987-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Diagnostic performance of 320-detector CT coronary angiography in patients with atrial fibrillation: preliminary results", 
    "pagination": "936-943", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "75619d06255efcbd70480245db13e349c70f570a2ae54db7afa66dabd0fa7f18"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21153826"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-010-1987-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024639060"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-010-1987-0", 
      "https://app.dimensions.ai/details/publication/pub.1024639060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-010-1987-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-1987-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-1987-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-1987-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-1987-0'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      67 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-010-1987-0 schema:about N0458e3c374494d809f30f3f8ccdaaf70
2 N074d43a7ce1a423595a75b06dcb03a4c
3 N0cd15ce5e21449ab977e59f6a6d464b8
4 N1c87e44cb98b4d3ebea30ae648a068f0
5 N43a234a79f7b4ad9afd9deeec183ebf8
6 N5565f6c41d52430b9787a8056735e745
7 N7802429252a343ea9ad4b22d4f375ba5
8 N8135f3568cdf4180ae6b51b82a196392
9 N90741df5c3f6426684c0b3059f49e6b7
10 N9f48ddfd24044143b8006a4566f073a0
11 Nba9ab82b88214211b7c5acfafedca10f
12 Nd28f8c9eaf8941f88ff1706c8694938b
13 Nd9a022e31dd3405594fbfaacd768719f
14 Nefa649b6e2564039827a4a5edfcea21d
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N64a6422980d244caa305d43e8d9d4dd0
18 schema:citation sg:pub.10.1007/s00330-005-0041-0
19 sg:pub.10.1007/s00330-006-0474-0
20 sg:pub.10.1007/s10554-008-9308-2
21 sg:pub.10.1007/s10554-008-9347-8
22 sg:pub.10.2165/00002512-200219110-00002
23 https://doi.org/10.1001/jama.298.3.317
24 https://doi.org/10.1016/j.acra.2008.08.016
25 https://doi.org/10.1016/j.ejrad.2006.06.009
26 https://doi.org/10.1016/j.jacc.2005.03.071
27 https://doi.org/10.1016/j.jacc.2005.05.056
28 https://doi.org/10.1016/j.jcct.2009.05.013
29 https://doi.org/10.1056/nejmra072149
30 https://doi.org/10.1097/rli.0b013e3181948b05
31 https://doi.org/10.1148/radiol.2441060004
32 https://doi.org/10.1148/radiol.2442061218
33 https://doi.org/10.1148/radiol.2453070094
34 https://doi.org/10.1148/radiol.2482072192
35 https://doi.org/10.1161/01.cir.51.4.5
36 https://doi.org/10.1161/circulationaha.106.177292
37 https://doi.org/10.1161/circulationaha.109.859280
38 https://doi.org/10.2214/ajr.08.2012
39 https://doi.org/10.2214/ajr.09.2319
40 https://doi.org/10.2214/ajr.184.5.01841413
41 https://doi.org/10.2307/2529310
42 schema:datePublished 2011-05
43 schema:datePublishedReg 2011-05-01
44 schema:description OBJECTIVE: To evaluate the feasibility, diagnostic accuracy, and radiation dose of CT coronary angiography (CTCA) in patients with atrial fibrillation (AF) using 320-detector CT. METHODS: Thirty-seven patients with persistent AF and suspected coronary artery disease (CAD) were enrolled. All patients underwent both 320-detector CTCA and conventional coronary angiography (CCA). CT image quality and the presence of significant (≥ 50%) stenosis were evaluated by two radiologists blinded to the results of CCA. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated using CCA as the reference standard. Differences in detection of coronary artery stenosis between 320-detector CTCA and CCA were evaluated with McNemar's test. Patient radiation dose was calculated by multiplying dose length product by conversion coefficient of 0.017. RESULTS: In total 474 evaluated coronary segments, 459 (96.8%) segments were diagnostically evaluable. On per-segment analysis, sensitivity, specificity, PPV and NPV were 90.0% (18 of 20), 99.3% (436 of 439), 85.7% (18 of 21) and 99.5% (436 of 438). No significant difference was found between 320-detector CTCA and CCA on the detection of significant stenosis (P = 1.000). Effective doses of 320-detector CTCA was 13.0 ± 4.7 mSv. CONCLUSION: 320-detector CTCA is feasible and accurate in excluding CAD in patients with AF.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N9ba0857cc0574b4c85fe002e00ed28e6
49 Nce37c3cd9fb948f89206b6dda449e499
50 sg:journal.1289120
51 schema:name Diagnostic performance of 320-detector CT coronary angiography in patients with atrial fibrillation: preliminary results
52 schema:pagination 936-943
53 schema:productId N4cfbc2f4a35d4adbbcea38b35b909e90
54 N97a77fa46f9c4c779fe524d14df385b8
55 Nb952bfd6b6aa4ce093f1d84e886baf9b
56 Nca426da6390e43a0b2f4e64c6f83f63b
57 Ned984c4bde354c99867ff151f7e19838
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024639060
59 https://doi.org/10.1007/s00330-010-1987-0
60 schema:sdDatePublished 2019-04-10T15:51
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N8b727b8308ff41e8a489719b2fd0f97b
63 schema:url http://link.springer.com/10.1007%2Fs00330-010-1987-0
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0458e3c374494d809f30f3f8ccdaaf70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Coronary Angiography
69 rdf:type schema:DefinedTerm
70 N074d43a7ce1a423595a75b06dcb03a4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Female
72 rdf:type schema:DefinedTerm
73 N0cd15ce5e21449ab977e59f6a6d464b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Aged
75 rdf:type schema:DefinedTerm
76 N1c87e44cb98b4d3ebea30ae648a068f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Predictive Value of Tests
78 rdf:type schema:DefinedTerm
79 N3999d05256f24c119be696424704c41a rdf:first sg:person.01017406664.97
80 rdf:rest N57800aebd15c4b8598c37c606a91f073
81 N43a234a79f7b4ad9afd9deeec183ebf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Radiology
83 rdf:type schema:DefinedTerm
84 N4cfbc2f4a35d4adbbcea38b35b909e90 schema:name dimensions_id
85 schema:value pub.1024639060
86 rdf:type schema:PropertyValue
87 N5565f6c41d52430b9787a8056735e745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Middle Aged
89 rdf:type schema:DefinedTerm
90 N57800aebd15c4b8598c37c606a91f073 rdf:first sg:person.01143631075.45
91 rdf:rest Nf1f77afe491d4fb781c36052936673d3
92 N5e710b78e1a74a4286710c5e2e315a89 rdf:first sg:person.014030237157.28
93 rdf:rest rdf:nil
94 N64a6422980d244caa305d43e8d9d4dd0 rdf:first sg:person.0713154075.07
95 rdf:rest Na5c681557a3a41b7ab4df67b2a44fea5
96 N7802429252a343ea9ad4b22d4f375ba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Reproducibility of Results
98 rdf:type schema:DefinedTerm
99 N8135f3568cdf4180ae6b51b82a196392 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Coronary Artery Disease
101 rdf:type schema:DefinedTerm
102 N8b727b8308ff41e8a489719b2fd0f97b schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N90741df5c3f6426684c0b3059f49e6b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Atrial Fibrillation
106 rdf:type schema:DefinedTerm
107 N97a77fa46f9c4c779fe524d14df385b8 schema:name readcube_id
108 schema:value 75619d06255efcbd70480245db13e349c70f570a2ae54db7afa66dabd0fa7f18
109 rdf:type schema:PropertyValue
110 N9ba0857cc0574b4c85fe002e00ed28e6 schema:issueNumber 5
111 rdf:type schema:PublicationIssue
112 N9f48ddfd24044143b8006a4566f073a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Male
114 rdf:type schema:DefinedTerm
115 Na5c681557a3a41b7ab4df67b2a44fea5 rdf:first sg:person.0576725475.78
116 rdf:rest N3999d05256f24c119be696424704c41a
117 Nb952bfd6b6aa4ce093f1d84e886baf9b schema:name pubmed_id
118 schema:value 21153826
119 rdf:type schema:PropertyValue
120 Nba9ab82b88214211b7c5acfafedca10f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Sensitivity and Specificity
122 rdf:type schema:DefinedTerm
123 Nca426da6390e43a0b2f4e64c6f83f63b schema:name nlm_unique_id
124 schema:value 9114774
125 rdf:type schema:PropertyValue
126 Nce37c3cd9fb948f89206b6dda449e499 schema:volumeNumber 21
127 rdf:type schema:PublicationVolume
128 Nd28f8c9eaf8941f88ff1706c8694938b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Constriction, Pathologic
130 rdf:type schema:DefinedTerm
131 Nd9a022e31dd3405594fbfaacd768719f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Humans
133 rdf:type schema:DefinedTerm
134 Ned984c4bde354c99867ff151f7e19838 schema:name doi
135 schema:value 10.1007/s00330-010-1987-0
136 rdf:type schema:PropertyValue
137 Nefa649b6e2564039827a4a5edfcea21d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Tomography, X-Ray Computed
139 rdf:type schema:DefinedTerm
140 Nf1f77afe491d4fb781c36052936673d3 rdf:first sg:person.0602566575.46
141 rdf:rest N5e710b78e1a74a4286710c5e2e315a89
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
146 schema:name Cardiorespiratory Medicine and Haematology
147 rdf:type schema:DefinedTerm
148 sg:journal.1289120 schema:issn 0938-7994
149 1432-1084
150 schema:name European Radiology
151 rdf:type schema:Periodical
152 sg:person.01017406664.97 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
153 schema:familyName Fan
154 schema:givenName Zhanming
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017406664.97
156 rdf:type schema:Person
157 sg:person.01143631075.45 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
158 schema:familyName Yu
159 schema:givenName Wei
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
161 rdf:type schema:Person
162 sg:person.014030237157.28 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
163 schema:familyName Zhang
164 schema:givenName Zhaoqi
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28
166 rdf:type schema:Person
167 sg:person.0576725475.78 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
168 schema:familyName Yang
169 schema:givenName Lin
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576725475.78
171 rdf:type schema:Person
172 sg:person.0602566575.46 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
173 schema:familyName Lv
174 schema:givenName Biao
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602566575.46
176 rdf:type schema:Person
177 sg:person.0713154075.07 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
178 schema:familyName Xu
179 schema:givenName Lei
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713154075.07
181 rdf:type schema:Person
182 sg:pub.10.1007/s00330-005-0041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033021022
183 https://doi.org/10.1007/s00330-005-0041-0
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00330-006-0474-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035473439
186 https://doi.org/10.1007/s00330-006-0474-0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s10554-008-9308-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026084106
189 https://doi.org/10.1007/s10554-008-9308-2
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s10554-008-9347-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010389969
192 https://doi.org/10.1007/s10554-008-9347-8
193 rdf:type schema:CreativeWork
194 sg:pub.10.2165/00002512-200219110-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011505105
195 https://doi.org/10.2165/00002512-200219110-00002
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1001/jama.298.3.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295152
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.acra.2008.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032209600
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.ejrad.2006.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014454875
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jacc.2005.03.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048922604
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jacc.2005.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002160027
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.jcct.2009.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027354141
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1056/nejmra072149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001923893
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1097/rli.0b013e3181948b05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013344559
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiol.2441060004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050679400
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1148/radiol.2442061218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053343799
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1148/radiol.2453070094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050231496
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1148/radiol.2482072192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024935051
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1161/01.cir.51.4.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063335684
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1161/circulationaha.106.177292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052097088
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1161/circulationaha.109.859280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053471912
226 rdf:type schema:CreativeWork
227 https://doi.org/10.2214/ajr.08.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299923
228 rdf:type schema:CreativeWork
229 https://doi.org/10.2214/ajr.09.2319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300049
230 rdf:type schema:CreativeWork
231 https://doi.org/10.2214/ajr.184.5.01841413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326862
232 rdf:type schema:CreativeWork
233 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
236 schema:name Department of radiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, 100029, Beijing, China
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...