Electronic cleansing for CT colonography: does it help CAD software performance in a high-risk population for colorectal cancer? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03-23

AUTHORS

Jae Yeon Wi, Se Hyung Kim, Jae Young Lee, Sang Gyun Kim, Joon Koo Han, Byung Ihn Choi

ABSTRACT

ObjectiveTo compare the performance of computer-aided detection (CAD) for CT colonography (CTC) with and without electronic cleansing (EC) in a high-risk population tagged with a faecal tagging (FT) protocol.MethodsThirty-two patients underwent CTC followed by same-day colonoscopy. All patients underwent bowel preparation and FT with barium and gastrografin. Each CTC dataset was processed with colon CAD with and without EC. Per-polyp sensitivity was calculated. The average number of false-positive (FP) results and their causes were also analysed and compared.ResultsEighty-six polyps were detected in 29 patients. Per-polyp sensitivities of CAD with EC (93.8% and 100%) were higher than those without EC (84.4% and 87.5%) for polyps ≥6 mm and ≥10 mm, respectively. However, the differences were not significant. The average number (6.3) of FPs of CAD with EC was significantly larger than that (3.1) without EC. The distribution of FPs in both CAD settings was also significantly different. The most common cause of FPs was the ileocaecal valve in both datasets. However, untagged faeces was a significantly less common cause of FPs with EC, EC-related artefacts being more common.ConclusionElectronic cleansing has the potential to improve per-polyp sensitivity of CTC CAD, although the significantly larger number of FPs with EC remains to be improved. More... »

PAGES

1905-1916

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-010-1765-z

DOI

http://dx.doi.org/10.1007/s00330-010-1765-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030618713

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20309555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colonography, Computed Tomographic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diatrizoate Meglumine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wi", 
        "givenName": "Jae Yeon", 
        "id": "sg:person.0621704474.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621704474.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Se Hyung", 
        "id": "sg:person.01134651464.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134651464.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jae Young", 
        "id": "sg:person.01202764664.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202764664.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sang Gyun", 
        "id": "sg:person.016035435043.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035435043.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Byung Ihn", 
        "id": "sg:person.0716036214.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036214.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1111/j.1572-0241.2003.07302.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049371404", 
          "https://doi.org/10.1111/j.1572-0241.2003.07302.x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-23", 
    "datePublishedReg": "2010-03-23", 
    "description": "ObjectiveTo compare the performance of computer-aided detection (CAD) for CT colonography (CTC) with and without electronic cleansing (EC) in a high-risk population tagged with a faecal tagging (FT) protocol.MethodsThirty-two patients underwent CTC followed by same-day colonoscopy. All patients underwent bowel preparation and FT with barium and gastrografin. Each CTC dataset was processed with colon CAD with and without EC. Per-polyp sensitivity was calculated. The average number of false-positive (FP) results and their causes were also analysed and compared.ResultsEighty-six polyps were detected in 29 patients. Per-polyp sensitivities of CAD with EC (93.8% and 100%) were higher than those without EC (84.4% and 87.5%) for polyps \u22656\u00a0mm and \u226510\u00a0mm, respectively. However, the differences were not significant. The average number (6.3) of FPs of CAD with EC was significantly larger than that (3.1) without EC. The distribution of FPs in both CAD settings was also significantly different. The most common cause of FPs was the ileocaecal valve in both datasets. However, untagged faeces was a significantly less common cause of FPs with EC, EC-related artefacts being more common.ConclusionElectronic cleansing has the potential to improve per-polyp sensitivity of CTC CAD, although the significantly larger number of FPs with EC remains to be improved.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-010-1765-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "high-risk population", 
      "CT colonography", 
      "common cause", 
      "MethodsThirty-two patients", 
      "same-day colonoscopy", 
      "polyp sensitivity", 
      "ileocaecal valve", 
      "computer-aided detection", 
      "bowel preparation", 
      "false-positive results", 
      "colorectal cancer", 
      "patients", 
      "average number", 
      "polyps", 
      "cause", 
      "colonography", 
      "electronic cleansing", 
      "cleansing", 
      "distribution of FP", 
      "Gastrografin", 
      "colonoscopy", 
      "ObjectiveTo", 
      "population", 
      "cancer", 
      "CTC datasets", 
      "sensitivity", 
      "faeces", 
      "valve", 
      "setting", 
      "number", 
      "differences", 
      "protocol", 
      "FP", 
      "large number", 
      "detection", 
      "potential", 
      "preparation", 
      "results", 
      "barium", 
      "distribution", 
      "ft", 
      "FPS", 
      "artifacts", 
      "dataset", 
      "performance", 
      "software performance"
    ], 
    "name": "Electronic cleansing for CT colonography: does it help CAD software performance in a high-risk population for colorectal cancer?", 
    "pagination": "1905-1916", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030618713"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-010-1765-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20309555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-010-1765-z", 
      "https://app.dimensions.ai/details/publication/pub.1030618713"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-010-1765-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-1765-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-1765-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-1765-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-010-1765-z'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      88 URIs      79 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-010-1765-z schema:about N02d32e9d4ef544bebf1dde3c4eaff6a8
2 N05d30546d59944e8b9922069d269e651
3 N46a305d23da64e24bc604ac6fb6e5b5c
4 N46be8043ed0c4ad5a5592b8474761c0a
5 N51c3226f65574816a4227e5f018f39ab
6 N52b0e130e7cd462fbccb2b317999ee45
7 N8cdbabecfc8f425babe2825266676467
8 N8dc40b4a2911418bac2636b7779f8f48
9 N93fdb5bedd294b639091e02b6077d598
10 Na773fbde78f4440dac405d02ba82df42
11 Nb245a4e064ca4891ab5f542bdd07d2ad
12 Ncd7f1579c70f42a48e656ac3d02bc3db
13 Nf3531a7b867f435fa8774b52a939ec54
14 Nf6c335377c5e4db6bdb1109056596aa9
15 Nfd9afc4632574cf6a40771fc9cce2276
16 Nfe21123d80ee426b84d8718a2cb575a3
17 anzsrc-for:11
18 anzsrc-for:1112
19 schema:author N5d51aac478354c568dda846da86a0090
20 schema:citation sg:pub.10.1111/j.1572-0241.2003.07302.x
21 schema:datePublished 2010-03-23
22 schema:datePublishedReg 2010-03-23
23 schema:description ObjectiveTo compare the performance of computer-aided detection (CAD) for CT colonography (CTC) with and without electronic cleansing (EC) in a high-risk population tagged with a faecal tagging (FT) protocol.MethodsThirty-two patients underwent CTC followed by same-day colonoscopy. All patients underwent bowel preparation and FT with barium and gastrografin. Each CTC dataset was processed with colon CAD with and without EC. Per-polyp sensitivity was calculated. The average number of false-positive (FP) results and their causes were also analysed and compared.ResultsEighty-six polyps were detected in 29 patients. Per-polyp sensitivities of CAD with EC (93.8% and 100%) were higher than those without EC (84.4% and 87.5%) for polyps ≥6 mm and ≥10 mm, respectively. However, the differences were not significant. The average number (6.3) of FPs of CAD with EC was significantly larger than that (3.1) without EC. The distribution of FPs in both CAD settings was also significantly different. The most common cause of FPs was the ileocaecal valve in both datasets. However, untagged faeces was a significantly less common cause of FPs with EC, EC-related artefacts being more common.ConclusionElectronic cleansing has the potential to improve per-polyp sensitivity of CTC CAD, although the significantly larger number of FPs with EC remains to be improved.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N7021824848f544e6a0d9fed91446b5d5
27 Ne696e808963f4d958b10dce3818236e5
28 sg:journal.1289120
29 schema:keywords CT colonography
30 CTC datasets
31 FP
32 FPS
33 Gastrografin
34 MethodsThirty-two patients
35 ObjectiveTo
36 artifacts
37 average number
38 barium
39 bowel preparation
40 cancer
41 cause
42 cleansing
43 colonography
44 colonoscopy
45 colorectal cancer
46 common cause
47 computer-aided detection
48 dataset
49 detection
50 differences
51 distribution
52 distribution of FP
53 electronic cleansing
54 faeces
55 false-positive results
56 ft
57 high-risk population
58 ileocaecal valve
59 large number
60 number
61 patients
62 performance
63 polyp sensitivity
64 polyps
65 population
66 potential
67 preparation
68 protocol
69 results
70 same-day colonoscopy
71 sensitivity
72 setting
73 software performance
74 valve
75 schema:name Electronic cleansing for CT colonography: does it help CAD software performance in a high-risk population for colorectal cancer?
76 schema:pagination 1905-1916
77 schema:productId N9d00b8d597f14e6bade62b34d3232f47
78 Nb8c095a5fcfa43e2a806352ae8a92397
79 Ncc6f05dd451549f4ae3da40ccdb36593
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030618713
81 https://doi.org/10.1007/s00330-010-1765-z
82 schema:sdDatePublished 2022-10-01T06:36
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N8346fc1861414881b641150caf856b99
85 schema:url https://doi.org/10.1007/s00330-010-1765-z
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N02d32e9d4ef544bebf1dde3c4eaff6a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Humans
91 rdf:type schema:DefinedTerm
92 N05d30546d59944e8b9922069d269e651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Risk Factors
94 rdf:type schema:DefinedTerm
95 N1a00449103324b168512069d876d56ee rdf:first sg:person.01134651464.00
96 rdf:rest Nf5b4da483be64200b588f7e5e3a4770e
97 N4670cb7b8f924eda98beca948c194f9e rdf:first sg:person.0716036214.08
98 rdf:rest rdf:nil
99 N46a305d23da64e24bc604ac6fb6e5b5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Radiographic Image Enhancement
101 rdf:type schema:DefinedTerm
102 N46be8043ed0c4ad5a5592b8474761c0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Radiographic Image Interpretation, Computer-Assisted
104 rdf:type schema:DefinedTerm
105 N51c3226f65574816a4227e5f018f39ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Diatrizoate Meglumine
107 rdf:type schema:DefinedTerm
108 N52b0e130e7cd462fbccb2b317999ee45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Algorithms
110 rdf:type schema:DefinedTerm
111 N5d51aac478354c568dda846da86a0090 rdf:first sg:person.0621704474.26
112 rdf:rest N1a00449103324b168512069d876d56ee
113 N7021824848f544e6a0d9fed91446b5d5 schema:volumeNumber 20
114 rdf:type schema:PublicationVolume
115 N721f21b63fce447cbb8eacd0107bad98 rdf:first sg:person.0647723014.95
116 rdf:rest N4670cb7b8f924eda98beca948c194f9e
117 N8346fc1861414881b641150caf856b99 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N8cdbabecfc8f425babe2825266676467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Colorectal Neoplasms
121 rdf:type schema:DefinedTerm
122 N8dc40b4a2911418bac2636b7779f8f48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Contrast Media
124 rdf:type schema:DefinedTerm
125 N93fdb5bedd294b639091e02b6077d598 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Male
127 rdf:type schema:DefinedTerm
128 N9d00b8d597f14e6bade62b34d3232f47 schema:name dimensions_id
129 schema:value pub.1030618713
130 rdf:type schema:PropertyValue
131 Na773fbde78f4440dac405d02ba82df42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Sensitivity and Specificity
133 rdf:type schema:DefinedTerm
134 Nb245a4e064ca4891ab5f542bdd07d2ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Reproducibility of Results
136 rdf:type schema:DefinedTerm
137 Nb8c095a5fcfa43e2a806352ae8a92397 schema:name doi
138 schema:value 10.1007/s00330-010-1765-z
139 rdf:type schema:PropertyValue
140 Ncc6f05dd451549f4ae3da40ccdb36593 schema:name pubmed_id
141 schema:value 20309555
142 rdf:type schema:PropertyValue
143 Ncd7f1579c70f42a48e656ac3d02bc3db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Pattern Recognition, Automated
145 rdf:type schema:DefinedTerm
146 Ne13a806a6c7d46e8a34e06bd945ece7b rdf:first sg:person.016035435043.00
147 rdf:rest N721f21b63fce447cbb8eacd0107bad98
148 Ne696e808963f4d958b10dce3818236e5 schema:issueNumber 8
149 rdf:type schema:PublicationIssue
150 Nf3531a7b867f435fa8774b52a939ec54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Feces
152 rdf:type schema:DefinedTerm
153 Nf5b4da483be64200b588f7e5e3a4770e rdf:first sg:person.01202764664.04
154 rdf:rest Ne13a806a6c7d46e8a34e06bd945ece7b
155 Nf6c335377c5e4db6bdb1109056596aa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Colonography, Computed Tomographic
157 rdf:type schema:DefinedTerm
158 Nfd9afc4632574cf6a40771fc9cce2276 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Subtraction Technique
160 rdf:type schema:DefinedTerm
161 Nfe21123d80ee426b84d8718a2cb575a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Female
163 rdf:type schema:DefinedTerm
164 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
165 schema:name Medical and Health Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
168 schema:name Oncology and Carcinogenesis
169 rdf:type schema:DefinedTerm
170 sg:journal.1289120 schema:issn 0938-7994
171 1432-1084
172 schema:name European Radiology
173 schema:publisher Springer Nature
174 rdf:type schema:Periodical
175 sg:person.01134651464.00 schema:affiliation grid-institutes:grid.412484.f
176 schema:familyName Kim
177 schema:givenName Se Hyung
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134651464.00
179 rdf:type schema:Person
180 sg:person.01202764664.04 schema:affiliation grid-institutes:grid.412484.f
181 schema:familyName Lee
182 schema:givenName Jae Young
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202764664.04
184 rdf:type schema:Person
185 sg:person.016035435043.00 schema:affiliation grid-institutes:grid.412484.f
186 schema:familyName Kim
187 schema:givenName Sang Gyun
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035435043.00
189 rdf:type schema:Person
190 sg:person.0621704474.26 schema:affiliation grid-institutes:grid.31501.36
191 schema:familyName Wi
192 schema:givenName Jae Yeon
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621704474.26
194 rdf:type schema:Person
195 sg:person.0647723014.95 schema:affiliation grid-institutes:grid.412484.f
196 schema:familyName Han
197 schema:givenName Joon Koo
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
199 rdf:type schema:Person
200 sg:person.0716036214.08 schema:affiliation grid-institutes:grid.412484.f
201 schema:familyName Choi
202 schema:givenName Byung Ihn
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036214.08
204 rdf:type schema:Person
205 sg:pub.10.1111/j.1572-0241.2003.07302.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049371404
206 https://doi.org/10.1111/j.1572-0241.2003.07302.x
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.31501.36 schema:alternateName Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea
209 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea
210 rdf:type schema:Organization
211 grid-institutes:grid.412484.f schema:alternateName Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
212 Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
213 schema:name Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
214 Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, 110-744, Jongno-gu, Seoul, Korea
215 Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...