Assessment of occlusive arterial disease of abdominal aorta and lower extremities arteries: value of multidetector CT angiography using an adaptive ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-09-26

AUTHORS

T. Laswed, E. Rizzo, D. Guntern, F. Doenz, A. Denys, P. Schnyder, S. D. Qanadli

ABSTRACT

We evaluated 16-detector-row CT in the assessment of occlusive peripheral arterial disease (PAD) of the abdominal aorta and lower extremities using an adaptive method of acquisition to optimise arterial enhancement especially for the distal foot arteries. Thirty-four patients underwent transcatheter angiography (TCA) and CT angiography within 15 days. For each patient, table speed and rotation were selected according to the calculated optimal transit time of contrast material obtained after a single bolus test and two dynamic acquisitions at aorta and popliteal arteries. Analysis included image quality and detection of stenosis equal or greater than 50% on a patient basis and on an arterial segment basis. Sensitivity and specificity of CT were calculated with the TCA considered as the standard of reference. CT was conclusive in all segments with no technical failures even in difficult cases with occluded bypasses and aneurysms. On patient-basis analysis, the overall sensitivity and specificity to detect significant stenosis greater than 50% were both 100%. Segmental analysis shows high values of sensitivity and specificity ranging from 91 to 100% and from 81 to 100%, respectively, including distal pedal arteries. Sixteen-detector-row CT angiography using an adaptive acquisition improves the image quality and provides a reliable non-invasive technique to assess occlusive peripheral arterial disease, including distal foot arteries. More... »

PAGES

263-272

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-007-0749-0

DOI

http://dx.doi.org/10.1007/s00330-007-0749-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032769529

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17899108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aorta, Abdominal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arterial Occlusive Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Femoral Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iliac Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iohexol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leg", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peripheral Vascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Popliteal Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tibial Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.414250.6", 
          "name": [
            "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laswed", 
        "givenName": "T.", 
        "id": "sg:person.01332556120.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332556120.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.414250.6", 
          "name": [
            "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzo", 
        "givenName": "E.", 
        "id": "sg:person.0607152020.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607152020.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.414250.6", 
          "name": [
            "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guntern", 
        "givenName": "D.", 
        "id": "sg:person.01161322217.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161322217.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.414250.6", 
          "name": [
            "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doenz", 
        "givenName": "F.", 
        "id": "sg:person.01204715560.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204715560.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.414250.6", 
          "name": [
            "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denys", 
        "givenName": "A.", 
        "id": "sg:person.01056531004.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056531004.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.414250.6", 
          "name": [
            "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schnyder", 
        "givenName": "P.", 
        "id": "sg:person.01305400010.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305400010.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.414250.6", 
          "name": [
            "Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qanadli", 
        "givenName": "S. D.", 
        "id": "sg:person.0665540063.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540063.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003300050483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006867321", 
          "https://doi.org/10.1007/s003300050483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-005-2812-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002290122", 
          "https://doi.org/10.1007/s00330-005-2812-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-004-2575-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045824204", 
          "https://doi.org/10.1007/s00330-004-2575-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09-26", 
    "datePublishedReg": "2007-09-26", 
    "description": "We evaluated 16-detector-row CT in the assessment of occlusive peripheral arterial disease (PAD) of the abdominal aorta and lower extremities using an adaptive method of acquisition to optimise arterial enhancement especially for the distal foot arteries. Thirty-four patients underwent transcatheter angiography (TCA) and CT angiography within 15\u00a0days. For each patient, table speed and rotation were selected according to the calculated optimal transit time of contrast material obtained after a single bolus test and two dynamic acquisitions at aorta and popliteal arteries. Analysis included image quality and detection of stenosis equal or greater than 50% on a patient basis and on an arterial segment basis. Sensitivity and specificity of CT were calculated with the TCA considered as the standard of reference. CT was conclusive in all segments with no technical failures even in difficult cases with occluded bypasses and aneurysms. On patient-basis analysis, the overall sensitivity and specificity to detect significant stenosis greater than 50% were both 100%. Segmental analysis shows high values of sensitivity and specificity ranging from 91 to 100% and from 81 to 100%, respectively, including distal pedal arteries. Sixteen-detector-row CT angiography using an adaptive acquisition improves the image quality and provides a reliable non-invasive technique to assess occlusive peripheral arterial disease, including distal foot arteries.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-007-0749-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "peripheral arterial disease", 
      "occlusive peripheral arterial disease", 
      "arterial disease", 
      "transcatheter angiography", 
      "CT angiography", 
      "foot arteries", 
      "abdominal aorta", 
      "occlusive arterial disease", 
      "Sixteen\u2013Detector Row CT Angiography", 
      "specificity of CT", 
      "reliable non-invasive technique", 
      "lower extremity arteries", 
      "multidetector CT angiography", 
      "detection of stenosis", 
      "patient-basis analysis", 
      "standard of reference", 
      "popliteal artery", 
      "pedal arteries", 
      "significant stenosis", 
      "extremity arteries", 
      "bolus test", 
      "lower extremities", 
      "arterial enhancement", 
      "patient basis", 
      "contrast material", 
      "artery", 
      "non-invasive technique", 
      "angiography", 
      "technical failure", 
      "aorta", 
      "overall sensitivity", 
      "disease", 
      "CT", 
      "segmental analysis", 
      "stenosis", 
      "segment basis", 
      "difficult cases", 
      "transit time", 
      "dynamic acquisition", 
      "specificity", 
      "optimal transit times", 
      "patients", 
      "aneurysms", 
      "bypass", 
      "extremities", 
      "assessment", 
      "sensitivity", 
      "image quality", 
      "days", 
      "table speed", 
      "failure", 
      "quality", 
      "cases", 
      "analysis", 
      "test", 
      "acquisition", 
      "segments", 
      "values", 
      "basis", 
      "detection", 
      "higher values", 
      "standards", 
      "time", 
      "method", 
      "enhancement", 
      "reference", 
      "technique", 
      "materials", 
      "rotation", 
      "acquisition method", 
      "adaptive acquisition", 
      "speed", 
      "adaptive method"
    ], 
    "name": "Assessment of occlusive arterial disease of abdominal aorta and lower extremities arteries: value of multidetector CT angiography using an adaptive acquisition method", 
    "pagination": "263-272", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032769529"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-007-0749-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17899108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-007-0749-0", 
      "https://app.dimensions.ai/details/publication/pub.1032769529"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_454.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-007-0749-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-007-0749-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-007-0749-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-007-0749-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-007-0749-0'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      123 URIs      112 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-007-0749-0 schema:about N1ced2cd0d00e4d9090617d0a36e362e2
2 N2880cda213f24e44b022a3e7390c323b
3 N3101749ab56a4b159be4ec8a85271766
4 N395df61ae8b0472bb26588fa8c55920d
5 N3bf651736320410ab3b0f343df6d4252
6 N5add07d8bd21413f89fc51b385146068
7 N5b6c307437664aab9ab24075b61cb6be
8 N827c1df3a380413daac6ab7b107d6987
9 N9343cede459d4fac849ba7f7711ebc83
10 N941597657f8a4a9d8b1f441af9b884e3
11 Na7e20550e2fa4a8ab0252a56bb260b4c
12 Nac0bbf4926324ce2afb07150174a6bf6
13 Nbccff35032c045b4b3c31208f47251a4
14 Nc4169629983740598f08e97de50c1e44
15 Ndd1314debc4249e49e43eea51605bf7a
16 Nde892e42bf5741808afe0d1f31f666c6
17 Ne35e4bcb332047d7addf4009a59511bf
18 Nf29e88fb1e934d2aae9cb831df98feb6
19 Nf385309ebad644fcb75768fc53005022
20 Nf58aa67d28e44517a8e2ee89a2656aa4
21 Nfbcdfb534e784374aa266197e5bacfd5
22 Nfe0c3efa288744de84f9aa096965ddff
23 anzsrc-for:11
24 anzsrc-for:1102
25 schema:author N2db689d6ba2f4f35b5a6a68d7423f542
26 schema:citation sg:pub.10.1007/s00330-004-2575-y
27 sg:pub.10.1007/s00330-005-2812-z
28 sg:pub.10.1007/s003300050483
29 schema:datePublished 2007-09-26
30 schema:datePublishedReg 2007-09-26
31 schema:description We evaluated 16-detector-row CT in the assessment of occlusive peripheral arterial disease (PAD) of the abdominal aorta and lower extremities using an adaptive method of acquisition to optimise arterial enhancement especially for the distal foot arteries. Thirty-four patients underwent transcatheter angiography (TCA) and CT angiography within 15 days. For each patient, table speed and rotation were selected according to the calculated optimal transit time of contrast material obtained after a single bolus test and two dynamic acquisitions at aorta and popliteal arteries. Analysis included image quality and detection of stenosis equal or greater than 50% on a patient basis and on an arterial segment basis. Sensitivity and specificity of CT were calculated with the TCA considered as the standard of reference. CT was conclusive in all segments with no technical failures even in difficult cases with occluded bypasses and aneurysms. On patient-basis analysis, the overall sensitivity and specificity to detect significant stenosis greater than 50% were both 100%. Segmental analysis shows high values of sensitivity and specificity ranging from 91 to 100% and from 81 to 100%, respectively, including distal pedal arteries. Sixteen-detector-row CT angiography using an adaptive acquisition improves the image quality and provides a reliable non-invasive technique to assess occlusive peripheral arterial disease, including distal foot arteries.
32 schema:genre article
33 schema:isAccessibleForFree true
34 schema:isPartOf N32008b4968054d5182713f95aee2729a
35 N321a225856d34374bd09452089037fcd
36 sg:journal.1289120
37 schema:keywords CT
38 CT angiography
39 Sixteen–Detector Row CT Angiography
40 abdominal aorta
41 acquisition
42 acquisition method
43 adaptive acquisition
44 adaptive method
45 analysis
46 aneurysms
47 angiography
48 aorta
49 arterial disease
50 arterial enhancement
51 artery
52 assessment
53 basis
54 bolus test
55 bypass
56 cases
57 contrast material
58 days
59 detection
60 detection of stenosis
61 difficult cases
62 disease
63 dynamic acquisition
64 enhancement
65 extremities
66 extremity arteries
67 failure
68 foot arteries
69 higher values
70 image quality
71 lower extremities
72 lower extremity arteries
73 materials
74 method
75 multidetector CT angiography
76 non-invasive technique
77 occlusive arterial disease
78 occlusive peripheral arterial disease
79 optimal transit times
80 overall sensitivity
81 patient basis
82 patient-basis analysis
83 patients
84 pedal arteries
85 peripheral arterial disease
86 popliteal artery
87 quality
88 reference
89 reliable non-invasive technique
90 rotation
91 segment basis
92 segmental analysis
93 segments
94 sensitivity
95 significant stenosis
96 specificity
97 specificity of CT
98 speed
99 standard of reference
100 standards
101 stenosis
102 table speed
103 technical failure
104 technique
105 test
106 time
107 transcatheter angiography
108 transit time
109 values
110 schema:name Assessment of occlusive arterial disease of abdominal aorta and lower extremities arteries: value of multidetector CT angiography using an adaptive acquisition method
111 schema:pagination 263-272
112 schema:productId N725d50e27fc54bd3b6aa15c4ce17c352
113 Ncfc5dec5dea9493ebf179f4c4bedd2f0
114 Nd0d8ed9ad3d84bb7824da2349c57bd5c
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032769529
116 https://doi.org/10.1007/s00330-007-0749-0
117 schema:sdDatePublished 2022-09-02T15:52
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher Nb5733c2d1c13468782b1bbe79c633777
120 schema:url https://doi.org/10.1007/s00330-007-0749-0
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N1ced2cd0d00e4d9090617d0a36e362e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Radiographic Image Enhancement
126 rdf:type schema:DefinedTerm
127 N2880cda213f24e44b022a3e7390c323b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Male
129 rdf:type schema:DefinedTerm
130 N2db689d6ba2f4f35b5a6a68d7423f542 rdf:first sg:person.01332556120.84
131 rdf:rest Nd3d3ba1dc6d44157af7502914971637f
132 N3101749ab56a4b159be4ec8a85271766 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Reproducibility of Results
134 rdf:type schema:DefinedTerm
135 N32008b4968054d5182713f95aee2729a schema:issueNumber 2
136 rdf:type schema:PublicationIssue
137 N321a225856d34374bd09452089037fcd schema:volumeNumber 18
138 rdf:type schema:PublicationVolume
139 N395df61ae8b0472bb26588fa8c55920d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Female
141 rdf:type schema:DefinedTerm
142 N3bf651736320410ab3b0f343df6d4252 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Aged
144 rdf:type schema:DefinedTerm
145 N3e733501c6364077b8fd6510588d494c rdf:first sg:person.01204715560.52
146 rdf:rest N98d8adcd886448be912a6de5be4f3657
147 N5add07d8bd21413f89fc51b385146068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Tomography, X-Ray Computed
149 rdf:type schema:DefinedTerm
150 N5b6c307437664aab9ab24075b61cb6be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Iohexol
152 rdf:type schema:DefinedTerm
153 N5fbe80b29bca499882f001c9c167b0ef rdf:first sg:person.0665540063.53
154 rdf:rest rdf:nil
155 N63255ed524cb482eb5bb280e9bbf81ba rdf:first sg:person.01305400010.47
156 rdf:rest N5fbe80b29bca499882f001c9c167b0ef
157 N725d50e27fc54bd3b6aa15c4ce17c352 schema:name pubmed_id
158 schema:value 17899108
159 rdf:type schema:PropertyValue
160 N827c1df3a380413daac6ab7b107d6987 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Iliac Artery
162 rdf:type schema:DefinedTerm
163 N9343cede459d4fac849ba7f7711ebc83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Femoral Artery
165 rdf:type schema:DefinedTerm
166 N941597657f8a4a9d8b1f441af9b884e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Contrast Media
168 rdf:type schema:DefinedTerm
169 N98d8adcd886448be912a6de5be4f3657 rdf:first sg:person.01056531004.66
170 rdf:rest N63255ed524cb482eb5bb280e9bbf81ba
171 Na7e20550e2fa4a8ab0252a56bb260b4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Adult
173 rdf:type schema:DefinedTerm
174 Nac0bbf4926324ce2afb07150174a6bf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Leg
176 rdf:type schema:DefinedTerm
177 Nb5733c2d1c13468782b1bbe79c633777 schema:name Springer Nature - SN SciGraph project
178 rdf:type schema:Organization
179 Nbccff35032c045b4b3c31208f47251a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Image Processing, Computer-Assisted
181 rdf:type schema:DefinedTerm
182 Nc4169629983740598f08e97de50c1e44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Arterial Occlusive Diseases
184 rdf:type schema:DefinedTerm
185 Ncfc5dec5dea9493ebf179f4c4bedd2f0 schema:name doi
186 schema:value 10.1007/s00330-007-0749-0
187 rdf:type schema:PropertyValue
188 Nd0d8ed9ad3d84bb7824da2349c57bd5c schema:name dimensions_id
189 schema:value pub.1032769529
190 rdf:type schema:PropertyValue
191 Nd3c4a717781a42fda109e72fbf6ddcea rdf:first sg:person.01161322217.54
192 rdf:rest N3e733501c6364077b8fd6510588d494c
193 Nd3d3ba1dc6d44157af7502914971637f rdf:first sg:person.0607152020.54
194 rdf:rest Nd3c4a717781a42fda109e72fbf6ddcea
195 Ndd1314debc4249e49e43eea51605bf7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Middle Aged
197 rdf:type schema:DefinedTerm
198 Nde892e42bf5741808afe0d1f31f666c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Aged, 80 and over
200 rdf:type schema:DefinedTerm
201 Ne35e4bcb332047d7addf4009a59511bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Peripheral Vascular Diseases
203 rdf:type schema:DefinedTerm
204 Nf29e88fb1e934d2aae9cb831df98feb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Humans
206 rdf:type schema:DefinedTerm
207 Nf385309ebad644fcb75768fc53005022 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Sensitivity and Specificity
209 rdf:type schema:DefinedTerm
210 Nf58aa67d28e44517a8e2ee89a2656aa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Popliteal Artery
212 rdf:type schema:DefinedTerm
213 Nfbcdfb534e784374aa266197e5bacfd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Tibial Arteries
215 rdf:type schema:DefinedTerm
216 Nfe0c3efa288744de84f9aa096965ddff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Aorta, Abdominal
218 rdf:type schema:DefinedTerm
219 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
220 schema:name Medical and Health Sciences
221 rdf:type schema:DefinedTerm
222 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
223 schema:name Cardiorespiratory Medicine and Haematology
224 rdf:type schema:DefinedTerm
225 sg:journal.1289120 schema:issn 0938-7994
226 1432-1084
227 schema:name European Radiology
228 schema:publisher Springer Nature
229 rdf:type schema:Periodical
230 sg:person.01056531004.66 schema:affiliation grid-institutes:grid.414250.6
231 schema:familyName Denys
232 schema:givenName A.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056531004.66
234 rdf:type schema:Person
235 sg:person.01161322217.54 schema:affiliation grid-institutes:grid.414250.6
236 schema:familyName Guntern
237 schema:givenName D.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161322217.54
239 rdf:type schema:Person
240 sg:person.01204715560.52 schema:affiliation grid-institutes:grid.414250.6
241 schema:familyName Doenz
242 schema:givenName F.
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204715560.52
244 rdf:type schema:Person
245 sg:person.01305400010.47 schema:affiliation grid-institutes:grid.414250.6
246 schema:familyName Schnyder
247 schema:givenName P.
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305400010.47
249 rdf:type schema:Person
250 sg:person.01332556120.84 schema:affiliation grid-institutes:grid.414250.6
251 schema:familyName Laswed
252 schema:givenName T.
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332556120.84
254 rdf:type schema:Person
255 sg:person.0607152020.54 schema:affiliation grid-institutes:grid.414250.6
256 schema:familyName Rizzo
257 schema:givenName E.
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607152020.54
259 rdf:type schema:Person
260 sg:person.0665540063.53 schema:affiliation grid-institutes:grid.414250.6
261 schema:familyName Qanadli
262 schema:givenName S. D.
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540063.53
264 rdf:type schema:Person
265 sg:pub.10.1007/s00330-004-2575-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045824204
266 https://doi.org/10.1007/s00330-004-2575-y
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s00330-005-2812-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002290122
269 https://doi.org/10.1007/s00330-005-2812-z
270 rdf:type schema:CreativeWork
271 sg:pub.10.1007/s003300050483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006867321
272 https://doi.org/10.1007/s003300050483
273 rdf:type schema:CreativeWork
274 grid-institutes:grid.414250.6 schema:alternateName Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland
275 schema:name Department of Radiology, CHUV, University Hospital of Lausanne, Bugnon 46, 1012, Lausanne, Switzerland
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...