Targeted silencing of genes in polyploids: lessons learned from Brassica juncea-glucosinolate system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Rehna Augustine, Naveen C. Bisht

ABSTRACT

KEY MESSAGE: Intron-spliced hairpin RNAi construct targeting the exonic region of BjuMYB28 driven by the native promoter is the best suited strategy for developing viable low glucosinolate lines in polyploid Brassica juncea. Targeted silencing of specific homolog(s) of a multigene family in polyploids through RNA interference (RNAi) is a challenging effort. Indian oilseed mustard (Brassica juncea), a natural allotetraploid, is expected to have 4-6 copies of every Arabidopsis gene ortholog. In the current study, we have attempted to establish the best gene silencing system suitable for BjuMYB28, a transcription factor gene, with the objective of developing low seed glucosinolate lines in B. juncea. After comparing multiple combinations of BjuMYB28 gene homologs, promoters, target regions (exon and 3' UTR) and silencing strategies (RNAi and antisense), we suggest that the intron-spliced hairpin RNAi construct targeting the specific exonic region of the BjuMYB28 gene under the control of native promoter, whose peak activity synchronises with the highest glucosinolate accumulation phase of the plant, is the best suited strategy for developing viable low glucosinolate lines in polyploid B. juncea. More... »

PAGES

1-7

Journal

TITLE

Plant Cell Reports

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00299-018-2348-8

DOI

http://dx.doi.org/10.1007/s00299-018-2348-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107531891

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30306251


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Plant Genome Research", 
          "id": "https://www.grid.ac/institutes/grid.419632.b", 
          "name": [
            "National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Augustine", 
        "givenName": "Rehna", 
        "id": "sg:person.01165676175.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165676175.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Plant Genome Research", 
          "id": "https://www.grid.ac/institutes/grid.419632.b", 
          "name": [
            "National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bisht", 
        "givenName": "Naveen C.", 
        "id": "sg:person.01060274165.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060274165.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000723233", 
          "https://doi.org/10.1038/nmeth913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000723233", 
          "https://doi.org/10.1038/nmeth913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2004.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pbi.12078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003998739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1439-0523.2002.00747.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006709966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna5160904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021691638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/ert280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024193437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-007-0648-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024421095", 
          "https://doi.org/10.1007/s00122-007-0648-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-007-0648-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024421095", 
          "https://doi.org/10.1007/s00122-007-0648-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2003.01857.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026461648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.arplant.57.032905.105228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030396132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2007.02084.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033866304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.105.040535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038741776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jhered/esl061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039847946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-008-0907-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043519477", 
          "https://doi.org/10.1007/s00122-008-0907-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-008-0907-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043519477", 
          "https://doi.org/10.1007/s00122-008-0907-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011603923889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044538837", 
          "https://doi.org/10.1023/a:1011603923889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2001.01105.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047855591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5876-2-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049914296", 
          "https://doi.org/10.1186/1479-5876-2-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053001947", 
          "https://doi.org/10.1038/ng.3657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/46.11.1753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059858186"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "KEY MESSAGE: Intron-spliced hairpin RNAi construct targeting the exonic region of BjuMYB28 driven by the native promoter is the best suited strategy for developing viable low glucosinolate lines in polyploid Brassica juncea. Targeted silencing of specific homolog(s) of a multigene family in polyploids through RNA interference (RNAi) is a challenging effort. Indian oilseed mustard (Brassica juncea), a natural allotetraploid, is expected to have 4-6 copies of every Arabidopsis gene ortholog. In the current study, we have attempted to establish the best gene silencing system suitable for BjuMYB28, a transcription factor gene, with the objective of developing low seed glucosinolate lines\u00a0in B. juncea. After comparing multiple combinations of BjuMYB28 gene homologs, promoters, target regions (exon and 3' UTR) and silencing strategies (RNAi and antisense), we suggest that the intron-spliced hairpin RNAi construct targeting the specific exonic region of the BjuMYB28 gene under the control of native promoter, whose peak activity synchronises with the highest glucosinolate accumulation phase of the plant, is the best suited strategy for developing viable low glucosinolate lines in polyploid B. juncea.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00299-018-2348-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124809", 
        "issn": [
          "0721-7714", 
          "1432-203X"
        ], 
        "name": "Plant Cell Reports", 
        "type": "Periodical"
      }
    ], 
    "name": "Targeted silencing of genes in polyploids: lessons learned from Brassica juncea-glucosinolate system", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6628fb02a219934c6d0dc595c40b687e769ae78c09b100e9ad22508b5159d23c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30306251"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9880970"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00299-018-2348-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107531891"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00299-018-2348-8", 
      "https://app.dimensions.ai/details/publication/pub.1107531891"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000559.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00299-018-2348-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00299-018-2348-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00299-018-2348-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00299-018-2348-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00299-018-2348-8'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00299-018-2348-8 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N4480f98776c04b358534a7baa08ba9b3
4 schema:citation sg:pub.10.1007/s00122-007-0648-4
5 sg:pub.10.1007/s00122-008-0907-z
6 sg:pub.10.1023/a:1011603923889
7 sg:pub.10.1038/ng.3657
8 sg:pub.10.1038/nmeth913
9 sg:pub.10.1186/1479-5876-2-39
10 https://doi.org/10.1016/j.copbio.2004.02.004
11 https://doi.org/10.1046/j.1365-313x.2001.01105.x
12 https://doi.org/10.1046/j.1365-313x.2003.01857.x
13 https://doi.org/10.1046/j.1439-0523.2002.00747.x
14 https://doi.org/10.1093/jhered/esl061
15 https://doi.org/10.1093/jxb/46.11.1753
16 https://doi.org/10.1093/jxb/ert280
17 https://doi.org/10.1105/tpc.105.040535
18 https://doi.org/10.1111/j.1469-8137.2007.02084.x
19 https://doi.org/10.1111/pbi.12078
20 https://doi.org/10.1146/annurev.arplant.57.032905.105228
21 https://doi.org/10.1261/rna5160904
22 schema:datePublished 2019-01
23 schema:datePublishedReg 2019-01-01
24 schema:description KEY MESSAGE: Intron-spliced hairpin RNAi construct targeting the exonic region of BjuMYB28 driven by the native promoter is the best suited strategy for developing viable low glucosinolate lines in polyploid Brassica juncea. Targeted silencing of specific homolog(s) of a multigene family in polyploids through RNA interference (RNAi) is a challenging effort. Indian oilseed mustard (Brassica juncea), a natural allotetraploid, is expected to have 4-6 copies of every Arabidopsis gene ortholog. In the current study, we have attempted to establish the best gene silencing system suitable for BjuMYB28, a transcription factor gene, with the objective of developing low seed glucosinolate lines in B. juncea. After comparing multiple combinations of BjuMYB28 gene homologs, promoters, target regions (exon and 3' UTR) and silencing strategies (RNAi and antisense), we suggest that the intron-spliced hairpin RNAi construct targeting the specific exonic region of the BjuMYB28 gene under the control of native promoter, whose peak activity synchronises with the highest glucosinolate accumulation phase of the plant, is the best suited strategy for developing viable low glucosinolate lines in polyploid B. juncea.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf sg:journal.1124809
29 schema:name Targeted silencing of genes in polyploids: lessons learned from Brassica juncea-glucosinolate system
30 schema:pagination 1-7
31 schema:productId N65b3db9071bf425aa15af573209809dc
32 N8794d24e270841e090dcdcbc6568de4b
33 Nd8f9ffcf9518490fafdc8645c33b02f2
34 Nea400d3f06794bb0b8e465f8ff19ff0f
35 Nff710ebd33ce4619b62ffbf01165399d
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107531891
37 https://doi.org/10.1007/s00299-018-2348-8
38 schema:sdDatePublished 2019-04-10T22:40
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N04c9022e2ce543dc86e652c600fb3d3f
41 schema:url https://link.springer.com/10.1007%2Fs00299-018-2348-8
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N04c9022e2ce543dc86e652c600fb3d3f schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N2d9b771924394ff28a604b1ddbb2cf12 rdf:first sg:person.01060274165.30
48 rdf:rest rdf:nil
49 N4480f98776c04b358534a7baa08ba9b3 rdf:first sg:person.01165676175.08
50 rdf:rest N2d9b771924394ff28a604b1ddbb2cf12
51 N65b3db9071bf425aa15af573209809dc schema:name nlm_unique_id
52 schema:value 9880970
53 rdf:type schema:PropertyValue
54 N8794d24e270841e090dcdcbc6568de4b schema:name dimensions_id
55 schema:value pub.1107531891
56 rdf:type schema:PropertyValue
57 Nd8f9ffcf9518490fafdc8645c33b02f2 schema:name doi
58 schema:value 10.1007/s00299-018-2348-8
59 rdf:type schema:PropertyValue
60 Nea400d3f06794bb0b8e465f8ff19ff0f schema:name readcube_id
61 schema:value 6628fb02a219934c6d0dc595c40b687e769ae78c09b100e9ad22508b5159d23c
62 rdf:type schema:PropertyValue
63 Nff710ebd33ce4619b62ffbf01165399d schema:name pubmed_id
64 schema:value 30306251
65 rdf:type schema:PropertyValue
66 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
67 schema:name Biological Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
70 schema:name Genetics
71 rdf:type schema:DefinedTerm
72 sg:journal.1124809 schema:issn 0721-7714
73 1432-203X
74 schema:name Plant Cell Reports
75 rdf:type schema:Periodical
76 sg:person.01060274165.30 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
77 schema:familyName Bisht
78 schema:givenName Naveen C.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060274165.30
80 rdf:type schema:Person
81 sg:person.01165676175.08 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
82 schema:familyName Augustine
83 schema:givenName Rehna
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165676175.08
85 rdf:type schema:Person
86 sg:pub.10.1007/s00122-007-0648-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024421095
87 https://doi.org/10.1007/s00122-007-0648-4
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00122-008-0907-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043519477
90 https://doi.org/10.1007/s00122-008-0907-z
91 rdf:type schema:CreativeWork
92 sg:pub.10.1023/a:1011603923889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044538837
93 https://doi.org/10.1023/a:1011603923889
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/ng.3657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053001947
96 https://doi.org/10.1038/ng.3657
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/nmeth913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000723233
99 https://doi.org/10.1038/nmeth913
100 rdf:type schema:CreativeWork
101 sg:pub.10.1186/1479-5876-2-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049914296
102 https://doi.org/10.1186/1479-5876-2-39
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.copbio.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139210
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1046/j.1365-313x.2001.01105.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047855591
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1046/j.1365-313x.2003.01857.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026461648
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1046/j.1439-0523.2002.00747.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006709966
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1093/jhered/esl061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039847946
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1093/jxb/46.11.1753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059858186
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1093/jxb/ert280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024193437
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1105/tpc.105.040535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038741776
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1111/j.1469-8137.2007.02084.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033866304
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1111/pbi.12078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003998739
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1146/annurev.arplant.57.032905.105228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030396132
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1261/rna5160904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021691638
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.419632.b schema:alternateName National Institute of Plant Genome Research
129 schema:name National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...