Retransformation of a male sterile barnase line with the barstar gene as an efficient alternative method to identify male sterile–restorer ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-06

AUTHORS

Naveen C. Bisht, Arun Jagannath, Pradeep K. Burma, Akshay K. Pradhan, Deepak Pental

ABSTRACT

We report in this study, an improved method for identifying male sterile-restorer combinations using the barnase-barstar system of pollination control for heterosis breeding in crop plants, as an alternative to the conventional line x tester cross method. In this strategy, a transgenic male sterile barnase line was retransformed with appropriate barstar constructs. Double transformants carrying both the barnase and barstar genes were identified and screened for their male fertility status. Using this strategy, 66-90% of fertile retransformants (restored events) were obtained in Brassica juncea using two different barstar constructs. Restored events were analysed for their pollen viability and copy number of the barstar gene. Around 90% of the restored events showed high pollen viability and approximately 30% contained single copy integrations of the barstar gene. These observations were significantly different from those made in our earlier studies using line (barnase) x tester (barstar) crosses, wherein only two viable male sterile-restorer combinations were identified by screening 88 different cross-combinations. The retransformation strategy not only generated several independent restorers for a given male sterile line from a single transformation experiment but also identified potential restorers in the T(0) generation itself leading to significant savings in time, cost and labour. Single copy restored plants with high pollen viability were selfed to segregate male sterile (barnase) and restorer (barstar) lines in the T(1) progeny which could subsequently be diversified into appropriate combiners for heterosis breeding. This strategy will be particularly useful for crop plants where poor transformation frequencies and/or lengthy transformation protocols are a major limitation. More... »

PAGES

727-733

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00299-006-0274-7

DOI

http://dx.doi.org/10.1007/s00299-006-0274-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010246585

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17205342


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hybrid Vigor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants, Genetically Modified", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ribonucleases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transformation, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants (CGMCP), University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bisht", 
        "givenName": "Naveen C.", 
        "id": "sg:person.01060274165.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060274165.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants (CGMCP), University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jagannath", 
        "givenName": "Arun", 
        "id": "sg:person.0702567757.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702567757.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burma", 
        "givenName": "Pradeep K.", 
        "id": "sg:person.01301675410.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301675410.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pradhan", 
        "givenName": "Akshay K.", 
        "id": "sg:person.01137563054.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants (CGMCP), University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India", 
            "Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pental", 
        "givenName": "Deepak", 
        "id": "sg:person.01230565713.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1011916216191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001066213", 
          "https://doi.org/10.1023/a:1011916216191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00014672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007506198", 
          "https://doi.org/10.1007/bf00014672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00014672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007506198", 
          "https://doi.org/10.1007/bf00014672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.2.12.1201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013352558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:molb.0000038002.45312.08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024497347", 
          "https://doi.org/10.1023/b:molb.0000038002.45312.08"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00272876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026091300", 
          "https://doi.org/10.1007/bf00272876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00272876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026091300", 
          "https://doi.org/10.1007/bf00272876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.1993.tb00169.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026946009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00026787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031129345", 
          "https://doi.org/10.1007/bf00026787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00026787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031129345", 
          "https://doi.org/10.1007/bf00026787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357384a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043125949", 
          "https://doi.org/10.1038/357384a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/17.16.6747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048346845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/347737a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052448203", 
          "https://doi.org/10.1038/347737a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3869340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070467372"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-06", 
    "datePublishedReg": "2007-06-01", 
    "description": "We report in this study, an improved method for identifying male sterile-restorer combinations using the barnase-barstar system of pollination control for heterosis breeding in crop plants, as an alternative to the conventional line x tester cross method. In this strategy, a transgenic male sterile barnase line was retransformed with appropriate barstar constructs. Double transformants carrying both the barnase and barstar genes were identified and screened for their male fertility status. Using this strategy, 66-90% of fertile retransformants (restored events) were obtained in Brassica juncea using two different barstar constructs. Restored events were analysed for their pollen viability and copy number of the barstar gene. Around 90% of the restored events showed high pollen viability and approximately 30% contained single copy integrations of the barstar gene. These observations were significantly different from those made in our earlier studies using line (barnase) x tester (barstar) crosses, wherein only two viable male sterile-restorer combinations were identified by screening 88 different cross-combinations. The retransformation strategy not only generated several independent restorers for a given male sterile line from a single transformation experiment but also identified potential restorers in the T(0) generation itself leading to significant savings in time, cost and labour. Single copy restored plants with high pollen viability were selfed to segregate male sterile (barnase) and restorer (barstar) lines in the T(1) progeny which could subsequently be diversified into appropriate combiners for heterosis breeding. This strategy will be particularly useful for crop plants where poor transformation frequencies and/or lengthy transformation protocols are a major limitation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00299-006-0274-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124809", 
        "issn": [
          "0721-7714", 
          "1432-203X"
        ], 
        "name": "Plant Cell Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Retransformation of a male sterile barnase line with the barstar gene as an efficient alternative method to identify male sterile\u2013restorer combinations for heterosis breeding", 
    "pagination": "727-733", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "30d0efad730ce0ba791dea0fb2245653113e7a4dbc23117e1c766c079d522faa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17205342"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9880970"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00299-006-0274-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010246585"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00299-006-0274-7", 
      "https://app.dimensions.ai/details/publication/pub.1010246585"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13081_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00299-006-0274-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00299-006-0274-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00299-006-0274-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00299-006-0274-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00299-006-0274-7'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      46 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00299-006-0274-7 schema:about N1210a7edd9b0476889a39b6d406c508c
2 N4b714f15e94841678ad22850b220bf6e
3 N96623ee8f7e3422889c63ffa21d429bc
4 N97b02cf4b9634346b107b8d247f3d848
5 Nc2559eacecb84c17b2f95bf9e2eb831c
6 Nd13693aea4d34449a223af6f4ab3ef3b
7 anzsrc-for:06
8 anzsrc-for:0604
9 schema:author Na2639ad963f5408cbc0549b885b2b5dd
10 schema:citation sg:pub.10.1007/bf00014672
11 sg:pub.10.1007/bf00026787
12 sg:pub.10.1007/bf00272876
13 sg:pub.10.1023/a:1011916216191
14 sg:pub.10.1023/b:molb.0000038002.45312.08
15 sg:pub.10.1038/347737a0
16 sg:pub.10.1038/357384a0
17 https://doi.org/10.1093/nar/17.16.6747
18 https://doi.org/10.1105/tpc.2.12.1201
19 https://doi.org/10.1111/j.1365-313x.1993.tb00169.x
20 https://doi.org/10.2307/3869340
21 schema:datePublished 2007-06
22 schema:datePublishedReg 2007-06-01
23 schema:description We report in this study, an improved method for identifying male sterile-restorer combinations using the barnase-barstar system of pollination control for heterosis breeding in crop plants, as an alternative to the conventional line x tester cross method. In this strategy, a transgenic male sterile barnase line was retransformed with appropriate barstar constructs. Double transformants carrying both the barnase and barstar genes were identified and screened for their male fertility status. Using this strategy, 66-90% of fertile retransformants (restored events) were obtained in Brassica juncea using two different barstar constructs. Restored events were analysed for their pollen viability and copy number of the barstar gene. Around 90% of the restored events showed high pollen viability and approximately 30% contained single copy integrations of the barstar gene. These observations were significantly different from those made in our earlier studies using line (barnase) x tester (barstar) crosses, wherein only two viable male sterile-restorer combinations were identified by screening 88 different cross-combinations. The retransformation strategy not only generated several independent restorers for a given male sterile line from a single transformation experiment but also identified potential restorers in the T(0) generation itself leading to significant savings in time, cost and labour. Single copy restored plants with high pollen viability were selfed to segregate male sterile (barnase) and restorer (barstar) lines in the T(1) progeny which could subsequently be diversified into appropriate combiners for heterosis breeding. This strategy will be particularly useful for crop plants where poor transformation frequencies and/or lengthy transformation protocols are a major limitation.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N3bc5345093214205a06f1d08f191777a
28 Nbb93572fd39c44c6b9e962199cbd4623
29 sg:journal.1124809
30 schema:name Retransformation of a male sterile barnase line with the barstar gene as an efficient alternative method to identify male sterile–restorer combinations for heterosis breeding
31 schema:pagination 727-733
32 schema:productId N18ca50460cc94db389f63e21dbdde791
33 N1e49703922654865a7b7dcb98a15bac2
34 N2a95567b3ce948cda129704ea41e31ae
35 N53dc299b179e474f8deaabd3fed65089
36 Na4e206c6673e4e5ea533da081a2160d8
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010246585
38 https://doi.org/10.1007/s00299-006-0274-7
39 schema:sdDatePublished 2019-04-11T14:28
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N44129e83b21a45e691a7a53746c8c5f4
42 schema:url https://link.springer.com/10.1007%2Fs00299-006-0274-7
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N1210a7edd9b0476889a39b6d406c508c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Plants, Genetically Modified
48 rdf:type schema:DefinedTerm
49 N18ca50460cc94db389f63e21dbdde791 schema:name doi
50 schema:value 10.1007/s00299-006-0274-7
51 rdf:type schema:PropertyValue
52 N1e49703922654865a7b7dcb98a15bac2 schema:name dimensions_id
53 schema:value pub.1010246585
54 rdf:type schema:PropertyValue
55 N2544e1f370db463a8b4ebb9f000ff05d rdf:first sg:person.0702567757.85
56 rdf:rest N2e1b968598b144bbbd6cdd82a9c26d71
57 N2a95567b3ce948cda129704ea41e31ae schema:name nlm_unique_id
58 schema:value 9880970
59 rdf:type schema:PropertyValue
60 N2e1b968598b144bbbd6cdd82a9c26d71 rdf:first sg:person.01301675410.41
61 rdf:rest N599abe10e7a6428fa23fe098cfad87f2
62 N3bc5345093214205a06f1d08f191777a schema:issueNumber 6
63 rdf:type schema:PublicationIssue
64 N44129e83b21a45e691a7a53746c8c5f4 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N4b714f15e94841678ad22850b220bf6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Breeding
68 rdf:type schema:DefinedTerm
69 N53dc299b179e474f8deaabd3fed65089 schema:name readcube_id
70 schema:value 30d0efad730ce0ba791dea0fb2245653113e7a4dbc23117e1c766c079d522faa
71 rdf:type schema:PropertyValue
72 N599abe10e7a6428fa23fe098cfad87f2 rdf:first sg:person.01137563054.00
73 rdf:rest N72886da8fee4492f8cc5c51a0c5c9d9d
74 N72886da8fee4492f8cc5c51a0c5c9d9d rdf:first sg:person.01230565713.24
75 rdf:rest rdf:nil
76 N96623ee8f7e3422889c63ffa21d429bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Ribonucleases
78 rdf:type schema:DefinedTerm
79 N97b02cf4b9634346b107b8d247f3d848 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Hybrid Vigor
81 rdf:type schema:DefinedTerm
82 Na2639ad963f5408cbc0549b885b2b5dd rdf:first sg:person.01060274165.30
83 rdf:rest N2544e1f370db463a8b4ebb9f000ff05d
84 Na4e206c6673e4e5ea533da081a2160d8 schema:name pubmed_id
85 schema:value 17205342
86 rdf:type schema:PropertyValue
87 Nbb93572fd39c44c6b9e962199cbd4623 schema:volumeNumber 26
88 rdf:type schema:PublicationVolume
89 Nc2559eacecb84c17b2f95bf9e2eb831c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Transformation, Genetic
91 rdf:type schema:DefinedTerm
92 Nd13693aea4d34449a223af6f4ab3ef3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Bacterial Proteins
94 rdf:type schema:DefinedTerm
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
99 schema:name Genetics
100 rdf:type schema:DefinedTerm
101 sg:journal.1124809 schema:issn 0721-7714
102 1432-203X
103 schema:name Plant Cell Reports
104 rdf:type schema:Periodical
105 sg:person.01060274165.30 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
106 schema:familyName Bisht
107 schema:givenName Naveen C.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060274165.30
109 rdf:type schema:Person
110 sg:person.01137563054.00 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
111 schema:familyName Pradhan
112 schema:givenName Akshay K.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00
114 rdf:type schema:Person
115 sg:person.01230565713.24 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
116 schema:familyName Pental
117 schema:givenName Deepak
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24
119 rdf:type schema:Person
120 sg:person.01301675410.41 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
121 schema:familyName Burma
122 schema:givenName Pradeep K.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301675410.41
124 rdf:type schema:Person
125 sg:person.0702567757.85 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
126 schema:familyName Jagannath
127 schema:givenName Arun
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702567757.85
129 rdf:type schema:Person
130 sg:pub.10.1007/bf00014672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007506198
131 https://doi.org/10.1007/bf00014672
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf00026787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031129345
134 https://doi.org/10.1007/bf00026787
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf00272876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026091300
137 https://doi.org/10.1007/bf00272876
138 rdf:type schema:CreativeWork
139 sg:pub.10.1023/a:1011916216191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001066213
140 https://doi.org/10.1023/a:1011916216191
141 rdf:type schema:CreativeWork
142 sg:pub.10.1023/b:molb.0000038002.45312.08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024497347
143 https://doi.org/10.1023/b:molb.0000038002.45312.08
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/347737a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052448203
146 https://doi.org/10.1038/347737a0
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/357384a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043125949
149 https://doi.org/10.1038/357384a0
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/nar/17.16.6747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048346845
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1105/tpc.2.12.1201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013352558
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1111/j.1365-313x.1993.tb00169.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026946009
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2307/3869340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070467372
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
160 schema:name Centre for Genetic Manipulation of Crop Plants (CGMCP), University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India
161 Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, 110021, New Delhi, India
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...