Risk factors for gout developed from hyperuricemia in China: a five-year prospective cohort study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04-29

AUTHORS

Yangang Wang, Shengli Yan, Changgui Li, Shihua Zhao, Jing Lv, Fang Wang, Dongmei Meng, Lin Han, Yunlong Wang, Zhimin Miao

ABSTRACT

The aim of the study was to investigate the factors that promote the development of gout in Chinese patients with hyperuricemia. Chinese cohort with 659 patients with hyperuricemia who had no history of gout at base line had been followed up for 5 years. The baseline data of the general states (gender, age, occupation and education level), lifestyle and behavior (smoking, drinking, and diet), the major chronic diseases (diabetes and hypertension), family history and gout attacks, physical examination (height, weight and blood pressure), and blood parameters (creatinine, urea nitrogen, triglycerides, total cholesterol and high-density lipoprotein cholesterol) were recorded before the follow-up. Over the five-year period, 75 hyperuricemia patients developed gout. In the logistic regression model, shrimp intake and shell intake were the risk factors (P = 0.038 and P < 0.001, respectively) and, combined with diabetes, also served as risk factor for gout developed from hyperuricemia, with relative risk (RR) of 2.571 (95 % confidence interval (95 % CI), 1.110–5.953), and females served as protective factors of gout, with RR of 0.113 (95 % CI, 0.041–0.312, referred to male). We identified that shrimp intake and shell intake, combined with diabetes, were the independent risk factors, and females served as protective factors of gout in those suffering from hyperuricemia in coast regions of Shandong province, China. More... »

PAGES

705-710

References to SciGraph publications

  • 2005-06. Recent advances in the epidemiology of gout in CURRENT RHEUMATOLOGY REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00296-012-2439-8

    DOI

    http://dx.doi.org/10.1007/s00296-012-2439-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053250613

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22544037


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "China", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cohort Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Creatinine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gout", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hyperuricemia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Logistic Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triglycerides", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yangang", 
            "id": "sg:person.01174133541.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174133541.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Shengli", 
            "id": "sg:person.01264206027.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264206027.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Changgui", 
            "id": "sg:person.0676564741.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676564741.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Shihua", 
            "id": "sg:person.01126020341.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126020341.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lv", 
            "givenName": "Jing", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Fang", 
            "id": "sg:person.01141040154.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141040154.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meng", 
            "givenName": "Dongmei", 
            "id": "sg:person.01004233441.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004233441.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Han", 
            "givenName": "Lin", 
            "id": "sg:person.01207366167.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207366167.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yunlong", 
            "id": "sg:person.01100400627.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100400627.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China", 
              "id": "http://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miao", 
            "givenName": "Zhimin", 
            "id": "sg:person.01331055627.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331055627.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11926-996-0045-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018007049", 
              "https://doi.org/10.1007/s11926-996-0045-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-04-29", 
        "datePublishedReg": "2012-04-29", 
        "description": "The aim of the study was to investigate the factors that promote the development of gout in Chinese patients with hyperuricemia. Chinese cohort with 659 patients with hyperuricemia who had no history of gout at base line had been followed up for 5\u00a0years. The baseline data of the general states (gender, age, occupation and education level), lifestyle and behavior (smoking, drinking, and diet), the major chronic diseases (diabetes and hypertension), family history and gout attacks, physical examination (height, weight and blood pressure), and blood parameters (creatinine, urea nitrogen, triglycerides, total cholesterol and high-density lipoprotein cholesterol) were recorded before the follow-up. Over the five-year period, 75 hyperuricemia patients developed gout. In the logistic regression model, shrimp intake and shell intake were the risk factors (P\u00a0=\u00a00.038 and P\u00a0<\u00a00.001, respectively) and, combined with diabetes, also served as risk factor for gout developed from hyperuricemia, with relative risk (RR) of 2.571 (95\u00a0% confidence interval (95\u00a0% CI), 1.110\u20135.953), and females served as protective factors of gout, with RR of 0.113 (95\u00a0% CI, 0.041\u20130.312, referred to male). We identified that shrimp intake and shell intake, combined with diabetes, were the independent risk factors, and females served as protective factors of gout in those suffering from hyperuricemia in coast regions of Shandong province, China.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00296-012-2439-8", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1093123", 
            "issn": [
              "0172-8172", 
              "1437-160X"
            ], 
            "name": "Rheumatology International", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "keywords": [
          "risk factors", 
          "relative risk", 
          "five-year prospective cohort study", 
          "protective factors", 
          "independent risk factor", 
          "prospective cohort study", 
          "development of gout", 
          "history of gout", 
          "major chronic diseases", 
          "logistic regression models", 
          "cohort study", 
          "gout attacks", 
          "physical examination", 
          "Chinese patients", 
          "hyperuricemia patients", 
          "chronic diseases", 
          "family history", 
          "Chinese cohort", 
          "hyperuricemia", 
          "gout", 
          "patients", 
          "blood parameters", 
          "intake", 
          "baseline data", 
          "five-year period", 
          "diabetes", 
          "base line", 
          "regression models", 
          "females", 
          "factors", 
          "general state", 
          "cohort", 
          "disease", 
          "risk", 
          "history", 
          "examination", 
          "study", 
          "lifestyle", 
          "aim", 
          "years", 
          "period", 
          "Shandong Province", 
          "data", 
          "development", 
          "lines", 
          "Province", 
          "attacks", 
          "China", 
          "region", 
          "model", 
          "Coast region", 
          "parameters", 
          "state", 
          "behavior"
        ], 
        "name": "Risk factors for gout developed from hyperuricemia in China: a five-year prospective cohort study", 
        "pagination": "705-710", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053250613"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00296-012-2439-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22544037"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00296-012-2439-8", 
          "https://app.dimensions.ai/details/publication/pub.1053250613"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_575.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00296-012-2439-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00296-012-2439-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00296-012-2439-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00296-012-2439-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00296-012-2439-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    249 TRIPLES      21 PREDICATES      97 URIs      88 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00296-012-2439-8 schema:about N1e788aac9488451da29f2ed439b8ba65
    2 N346bd90f5dd34f6e8c04577292b3231b
    3 N3e24b2b412794877968d5b94f0295975
    4 N3ef9c7c0f36b4e66869348e0562f447e
    5 N404312a180db4a6bb81c7589c36a29d8
    6 N4385accd8daa451fa85b8bff006fd8b5
    7 N54146bf28ed74649a96ce4f656e8e8d9
    8 N61109b59cd3345ef93a7866915b5e326
    9 N92462c646466456ea6421b5923e10802
    10 Nabaeea8628334ad196ffef2dfe8bab87
    11 Nad83f5b055c445499c7a3c914ed31a7e
    12 Nb29aaf0e26da4fde8053d42ca99a2216
    13 Nb623ab7443ba49a2ae035c69174e3900
    14 Nb70cabd99df54062b587b87e522c12fc
    15 Nb9ec91082e094f1186fe75f08daf2ff4
    16 Nc4c9687adc224aa8bf6bde77da4a30e1
    17 Nf82fcaa06a854bf89320696f4cc03a0e
    18 anzsrc-for:11
    19 anzsrc-for:1117
    20 schema:author N3b79a860fd6c48d2a33a82080ac1a4f0
    21 schema:citation sg:pub.10.1007/s11926-996-0045-z
    22 schema:datePublished 2012-04-29
    23 schema:datePublishedReg 2012-04-29
    24 schema:description The aim of the study was to investigate the factors that promote the development of gout in Chinese patients with hyperuricemia. Chinese cohort with 659 patients with hyperuricemia who had no history of gout at base line had been followed up for 5 years. The baseline data of the general states (gender, age, occupation and education level), lifestyle and behavior (smoking, drinking, and diet), the major chronic diseases (diabetes and hypertension), family history and gout attacks, physical examination (height, weight and blood pressure), and blood parameters (creatinine, urea nitrogen, triglycerides, total cholesterol and high-density lipoprotein cholesterol) were recorded before the follow-up. Over the five-year period, 75 hyperuricemia patients developed gout. In the logistic regression model, shrimp intake and shell intake were the risk factors (P = 0.038 and P < 0.001, respectively) and, combined with diabetes, also served as risk factor for gout developed from hyperuricemia, with relative risk (RR) of 2.571 (95 % confidence interval (95 % CI), 1.110–5.953), and females served as protective factors of gout, with RR of 0.113 (95 % CI, 0.041–0.312, referred to male). We identified that shrimp intake and shell intake, combined with diabetes, were the independent risk factors, and females served as protective factors of gout in those suffering from hyperuricemia in coast regions of Shandong province, China.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N94d5d870f05a478eb345f377623a1785
    28 Nc9b69de5281744078478bc441eca8367
    29 sg:journal.1093123
    30 schema:keywords China
    31 Chinese cohort
    32 Chinese patients
    33 Coast region
    34 Province
    35 Shandong Province
    36 aim
    37 attacks
    38 base line
    39 baseline data
    40 behavior
    41 blood parameters
    42 chronic diseases
    43 cohort
    44 cohort study
    45 data
    46 development
    47 development of gout
    48 diabetes
    49 disease
    50 examination
    51 factors
    52 family history
    53 females
    54 five-year period
    55 five-year prospective cohort study
    56 general state
    57 gout
    58 gout attacks
    59 history
    60 history of gout
    61 hyperuricemia
    62 hyperuricemia patients
    63 independent risk factor
    64 intake
    65 lifestyle
    66 lines
    67 logistic regression models
    68 major chronic diseases
    69 model
    70 parameters
    71 patients
    72 period
    73 physical examination
    74 prospective cohort study
    75 protective factors
    76 region
    77 regression models
    78 relative risk
    79 risk
    80 risk factors
    81 state
    82 study
    83 years
    84 schema:name Risk factors for gout developed from hyperuricemia in China: a five-year prospective cohort study
    85 schema:pagination 705-710
    86 schema:productId Na18ca68c1d374c1ab5cb775b76ddf0d5
    87 Na387fba3ded44c24bc6afb1c587dbc3c
    88 Nb067b000455a49ebbc0727114b33de58
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053250613
    90 https://doi.org/10.1007/s00296-012-2439-8
    91 schema:sdDatePublished 2022-11-24T20:56
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N9a12097b9baf40d5be895a10f4cbce37
    94 schema:url https://doi.org/10.1007/s00296-012-2439-8
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N093ff5ec41164fbea321940a81d06b6a rdf:first sg:person.0676564741.16
    99 rdf:rest Ne816656023d849d8866481096fb06fc9
    100 N175fe9dc31754244bd89b2bb5954a81c rdf:first sg:person.01207366167.36
    101 rdf:rest Na3be72865b17416a853cd7180da6e570
    102 N1e788aac9488451da29f2ed439b8ba65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Cohort Studies
    104 rdf:type schema:DefinedTerm
    105 N2980139269c1498f8cbf37ed09f244d3 rdf:first sg:person.01141040154.11
    106 rdf:rest N5174291926904317988bc6893ecb10ab
    107 N346bd90f5dd34f6e8c04577292b3231b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Aged, 80 and over
    109 rdf:type schema:DefinedTerm
    110 N3b79a860fd6c48d2a33a82080ac1a4f0 rdf:first sg:person.01174133541.97
    111 rdf:rest N6c8ebd8a212248a18f87a38e6c4e386a
    112 N3e24b2b412794877968d5b94f0295975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Gout
    114 rdf:type schema:DefinedTerm
    115 N3ef9c7c0f36b4e66869348e0562f447e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Middle Aged
    117 rdf:type schema:DefinedTerm
    118 N404312a180db4a6bb81c7589c36a29d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Triglycerides
    120 rdf:type schema:DefinedTerm
    121 N4385accd8daa451fa85b8bff006fd8b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Aged
    123 rdf:type schema:DefinedTerm
    124 N49543e513c074ba194680f85d164c1ef schema:affiliation grid-institutes:grid.410645.2
    125 schema:familyName Lv
    126 schema:givenName Jing
    127 rdf:type schema:Person
    128 N5174291926904317988bc6893ecb10ab rdf:first sg:person.01004233441.51
    129 rdf:rest N175fe9dc31754244bd89b2bb5954a81c
    130 N54146bf28ed74649a96ce4f656e8e8d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Hyperuricemia
    132 rdf:type schema:DefinedTerm
    133 N61109b59cd3345ef93a7866915b5e326 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Humans
    135 rdf:type schema:DefinedTerm
    136 N6bf23fdbd60e472ab893ab7cdfacf9e2 rdf:first sg:person.01331055627.09
    137 rdf:rest rdf:nil
    138 N6c8ebd8a212248a18f87a38e6c4e386a rdf:first sg:person.01264206027.80
    139 rdf:rest N093ff5ec41164fbea321940a81d06b6a
    140 N92462c646466456ea6421b5923e10802 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Female
    142 rdf:type schema:DefinedTerm
    143 N94d5d870f05a478eb345f377623a1785 schema:issueNumber 3
    144 rdf:type schema:PublicationIssue
    145 N9a12097b9baf40d5be895a10f4cbce37 schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 Na18ca68c1d374c1ab5cb775b76ddf0d5 schema:name pubmed_id
    148 schema:value 22544037
    149 rdf:type schema:PropertyValue
    150 Na387fba3ded44c24bc6afb1c587dbc3c schema:name doi
    151 schema:value 10.1007/s00296-012-2439-8
    152 rdf:type schema:PropertyValue
    153 Na3be72865b17416a853cd7180da6e570 rdf:first sg:person.01100400627.28
    154 rdf:rest N6bf23fdbd60e472ab893ab7cdfacf9e2
    155 Nabaeea8628334ad196ffef2dfe8bab87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Adolescent
    157 rdf:type schema:DefinedTerm
    158 Nad83f5b055c445499c7a3c914ed31a7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name China
    160 rdf:type schema:DefinedTerm
    161 Nb067b000455a49ebbc0727114b33de58 schema:name dimensions_id
    162 schema:value pub.1053250613
    163 rdf:type schema:PropertyValue
    164 Nb29aaf0e26da4fde8053d42ca99a2216 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Logistic Models
    166 rdf:type schema:DefinedTerm
    167 Nb623ab7443ba49a2ae035c69174e3900 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Creatinine
    169 rdf:type schema:DefinedTerm
    170 Nb70cabd99df54062b587b87e522c12fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Adult
    172 rdf:type schema:DefinedTerm
    173 Nb9ec91082e094f1186fe75f08daf2ff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Male
    175 rdf:type schema:DefinedTerm
    176 Nc4c9687adc224aa8bf6bde77da4a30e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Prospective Studies
    178 rdf:type schema:DefinedTerm
    179 Nc9b69de5281744078478bc441eca8367 schema:volumeNumber 33
    180 rdf:type schema:PublicationVolume
    181 Ne816656023d849d8866481096fb06fc9 rdf:first sg:person.01126020341.06
    182 rdf:rest Ned5da2e08c054846b27b08c29283b5b0
    183 Ned5da2e08c054846b27b08c29283b5b0 rdf:first N49543e513c074ba194680f85d164c1ef
    184 rdf:rest N2980139269c1498f8cbf37ed09f244d3
    185 Nf82fcaa06a854bf89320696f4cc03a0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Risk Factors
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Medical and Health Sciences
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Public Health and Health Services
    193 rdf:type schema:DefinedTerm
    194 sg:journal.1093123 schema:issn 0172-8172
    195 1437-160X
    196 schema:name Rheumatology International
    197 schema:publisher Springer Nature
    198 rdf:type schema:Periodical
    199 sg:person.01004233441.51 schema:affiliation grid-institutes:grid.410645.2
    200 schema:familyName Meng
    201 schema:givenName Dongmei
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004233441.51
    203 rdf:type schema:Person
    204 sg:person.01100400627.28 schema:affiliation grid-institutes:grid.410645.2
    205 schema:familyName Wang
    206 schema:givenName Yunlong
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100400627.28
    208 rdf:type schema:Person
    209 sg:person.01126020341.06 schema:affiliation grid-institutes:grid.410645.2
    210 schema:familyName Zhao
    211 schema:givenName Shihua
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126020341.06
    213 rdf:type schema:Person
    214 sg:person.01141040154.11 schema:affiliation grid-institutes:grid.410645.2
    215 schema:familyName Wang
    216 schema:givenName Fang
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141040154.11
    218 rdf:type schema:Person
    219 sg:person.01174133541.97 schema:affiliation grid-institutes:grid.410645.2
    220 schema:familyName Wang
    221 schema:givenName Yangang
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174133541.97
    223 rdf:type schema:Person
    224 sg:person.01207366167.36 schema:affiliation grid-institutes:grid.410645.2
    225 schema:familyName Han
    226 schema:givenName Lin
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207366167.36
    228 rdf:type schema:Person
    229 sg:person.01264206027.80 schema:affiliation grid-institutes:grid.410645.2
    230 schema:familyName Yan
    231 schema:givenName Shengli
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264206027.80
    233 rdf:type schema:Person
    234 sg:person.01331055627.09 schema:affiliation grid-institutes:grid.410645.2
    235 schema:familyName Miao
    236 schema:givenName Zhimin
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331055627.09
    238 rdf:type schema:Person
    239 sg:person.0676564741.16 schema:affiliation grid-institutes:grid.410645.2
    240 schema:familyName Li
    241 schema:givenName Changgui
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676564741.16
    243 rdf:type schema:Person
    244 sg:pub.10.1007/s11926-996-0045-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018007049
    245 https://doi.org/10.1007/s11926-996-0045-z
    246 rdf:type schema:CreativeWork
    247 grid-institutes:grid.410645.2 schema:alternateName Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China
    248 schema:name Affiliated Hospital of Qingdao Medical College, Qingdao University, 266011, Qingdao, China
    249 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...