Indirect search for the vehicle routing problem with pickup and delivery and time windows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Ulrich Derigs, Thomas Döhmer

ABSTRACT

The vehicle routing problem with pickup and delivery and time windows (VRPPDTW) is one of the prominent members studied in the class of rich vehicle routing problems and it has become one of the challenges for developing heuristics which are accurate and fast at the same time. Indirect local search heuristics are ideally suited to flexibly handle complex constraints as those occurring in rich combinatorial optimization problems by separating the problem of securing feasibility of solutions from the objective-driven metaheuristic search process using simple encodings and appropriate decoders. In this paper we show that the approach of indirect local search with greedy decoding (GIST) is not only flexible and simple but when applied to the VRPPDTW it also gives results which are competitive with state-of-the-art VRPPDTW-methods by Li and Lim, as well as Pankratz. More... »

PAGES

149-165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00291-006-0072-1

DOI

http://dx.doi.org/10.1007/s00291-006-0072-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031342079


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Department of Information Systems and Operations Research (WINFORS), University of Cologne, Pohligstr. 1, 50969, Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derigs", 
        "givenName": "Ulrich", 
        "id": "sg:person.014622721723.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014622721723.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Department of Information Systems and Operations Research (WINFORS), University of Cologne, Pohligstr. 1, 50969, Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00f6hmer", 
        "givenName": "Thomas", 
        "id": "sg:person.013031015305.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031015305.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-58300-1_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003785251", 
          "https://doi.org/10.1007/978-3-642-58300-1_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58300-1_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003785251", 
          "https://doi.org/10.1007/978-3-642-58300-1_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-004-0173-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012015206", 
          "https://doi.org/10.1007/s00291-004-0173-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(90)90201-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020783134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00127077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022089241", 
          "https://doi.org/10.1007/bf00127077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00127077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022089241", 
          "https://doi.org/10.1007/bf00127077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-27679-3_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029879589", 
          "https://doi.org/10.1007/3-540-27679-3_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-004-0180-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031362493", 
          "https://doi.org/10.1007/s00291-004-0180-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5775-3_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032647084", 
          "https://doi.org/10.1007/978-1-4615-5775-3_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5775-3_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032647084", 
          "https://doi.org/10.1007/978-1-4615-5775-3_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218213003001186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062964318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.35.2.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.1030.0046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.29.1.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064735320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.35.3.331.10147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064735570"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "The vehicle routing problem with pickup and delivery and time windows (VRPPDTW) is one of the prominent members studied in the class of rich vehicle routing problems and it has become one of the challenges for developing heuristics which are accurate and fast at the same time. Indirect local search heuristics are ideally suited to flexibly handle complex constraints as those occurring in rich combinatorial optimization problems by separating the problem of securing feasibility of solutions from the objective-driven metaheuristic search process using simple encodings and appropriate decoders. In this paper we show that the approach of indirect local search with greedy decoding (GIST) is not only flexible and simple but when applied to the VRPPDTW it also gives results which are competitive with state-of-the-art VRPPDTW-methods by Li and Lim, as well as Pankratz.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00291-006-0072-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044245", 
        "issn": [
          "0171-6468", 
          "1436-6304"
        ], 
        "name": "OR Spectrum", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Indirect search for the vehicle routing problem with pickup and delivery and time windows", 
    "pagination": "149-165", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "954ef26a2aa160a6a88635f7f0da3aff62ee1b81597e506a7826920d3639b628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00291-006-0072-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031342079"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00291-006-0072-1", 
      "https://app.dimensions.ai/details/publication/pub.1031342079"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13068_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00291-006-0072-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00291-006-0072-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00291-006-0072-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00291-006-0072-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00291-006-0072-1'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00291-006-0072-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N225c2e5528b24ef1bbd439f980a8a1c7
4 schema:citation sg:pub.10.1007/3-540-27679-3_18
5 sg:pub.10.1007/978-1-4615-5775-3_16
6 sg:pub.10.1007/978-3-642-58300-1_42
7 sg:pub.10.1007/bf00127077
8 sg:pub.10.1007/s00291-004-0173-7
9 sg:pub.10.1007/s00291-004-0180-8
10 https://doi.org/10.1016/0021-9991(90)90201-b
11 https://doi.org/10.1142/s0218213003001186
12 https://doi.org/10.1287/opre.35.2.254
13 https://doi.org/10.1287/trsc.1030.0046
14 https://doi.org/10.1287/trsc.29.1.17
15 https://doi.org/10.1287/trsc.35.3.331.10147
16 schema:datePublished 2008-01
17 schema:datePublishedReg 2008-01-01
18 schema:description The vehicle routing problem with pickup and delivery and time windows (VRPPDTW) is one of the prominent members studied in the class of rich vehicle routing problems and it has become one of the challenges for developing heuristics which are accurate and fast at the same time. Indirect local search heuristics are ideally suited to flexibly handle complex constraints as those occurring in rich combinatorial optimization problems by separating the problem of securing feasibility of solutions from the objective-driven metaheuristic search process using simple encodings and appropriate decoders. In this paper we show that the approach of indirect local search with greedy decoding (GIST) is not only flexible and simple but when applied to the VRPPDTW it also gives results which are competitive with state-of-the-art VRPPDTW-methods by Li and Lim, as well as Pankratz.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N512b2e6b2c7842a2ba121d2c4d794c4e
23 N7712ed13726c434988a9fec91cbca667
24 sg:journal.1044245
25 schema:name Indirect search for the vehicle routing problem with pickup and delivery and time windows
26 schema:pagination 149-165
27 schema:productId N0c9061cda41a43fc9d3608935919bc0c
28 N85ef61149afc4e64b742a218f1010cf8
29 Naa97c03cc2864e6f86fa362c59e24882
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031342079
31 https://doi.org/10.1007/s00291-006-0072-1
32 schema:sdDatePublished 2019-04-11T14:25
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ne948b0ce4cf54f3482c75b154791816c
35 schema:url http://link.springer.com/10.1007/s00291-006-0072-1
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0c9061cda41a43fc9d3608935919bc0c schema:name readcube_id
40 schema:value 954ef26a2aa160a6a88635f7f0da3aff62ee1b81597e506a7826920d3639b628
41 rdf:type schema:PropertyValue
42 N225c2e5528b24ef1bbd439f980a8a1c7 rdf:first sg:person.014622721723.54
43 rdf:rest N68be5b961d2b40d5ae4b204bcde54cfc
44 N512b2e6b2c7842a2ba121d2c4d794c4e schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N68be5b961d2b40d5ae4b204bcde54cfc rdf:first sg:person.013031015305.10
47 rdf:rest rdf:nil
48 N7712ed13726c434988a9fec91cbca667 schema:volumeNumber 30
49 rdf:type schema:PublicationVolume
50 N85ef61149afc4e64b742a218f1010cf8 schema:name doi
51 schema:value 10.1007/s00291-006-0072-1
52 rdf:type schema:PropertyValue
53 Naa97c03cc2864e6f86fa362c59e24882 schema:name dimensions_id
54 schema:value pub.1031342079
55 rdf:type schema:PropertyValue
56 Ne948b0ce4cf54f3482c75b154791816c schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
64 sg:journal.1044245 schema:issn 0171-6468
65 1436-6304
66 schema:name OR Spectrum
67 rdf:type schema:Periodical
68 sg:person.013031015305.10 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
69 schema:familyName Döhmer
70 schema:givenName Thomas
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031015305.10
72 rdf:type schema:Person
73 sg:person.014622721723.54 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
74 schema:familyName Derigs
75 schema:givenName Ulrich
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014622721723.54
77 rdf:type schema:Person
78 sg:pub.10.1007/3-540-27679-3_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029879589
79 https://doi.org/10.1007/3-540-27679-3_18
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/978-1-4615-5775-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032647084
82 https://doi.org/10.1007/978-1-4615-5775-3_16
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/978-3-642-58300-1_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003785251
85 https://doi.org/10.1007/978-3-642-58300-1_42
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf00127077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022089241
88 https://doi.org/10.1007/bf00127077
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00291-004-0173-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012015206
91 https://doi.org/10.1007/s00291-004-0173-7
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00291-004-0180-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031362493
94 https://doi.org/10.1007/s00291-004-0180-8
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0021-9991(90)90201-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1020783134
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1142/s0218213003001186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062964318
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1287/opre.35.2.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729808
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1287/trsc.1030.0046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734085
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1287/trsc.29.1.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735320
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1287/trsc.35.3.331.10147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735570
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
109 schema:name Department of Information Systems and Operations Research (WINFORS), University of Cologne, Pohligstr. 1, 50969, Cologne, Germany
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...