A Grouping Genetic Algorithm for the Pickup and Delivery Problem with Time Windows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-01

AUTHORS

Giselher Pankratz

ABSTRACT

The Pickup and Delivery Problem with Time Windows (PDPTW) is a generalization of the well studied Vehicle Routing Problem with Time Windows (VRPTW). Since it models several typical planning situations in operational transportation logistics and public transit, the PDPTW has attracted growing interest in recent years. This paper proposes a Grouping Genetic Algorithm (GGA) for solving the PDPTW which features a group-oriented genetic encoding in which each gene represents a group of requests instead of a single request. The GGA is subject to a comparative test on the basis of two publicly available benchmark problem sets that comprise 9 and 56 PDPTW instances, respectively. The results show that the proposed GGA is competitive. More... »

PAGES

21-41

Journal

TITLE

OR Spectrum

ISSUE

1

VOLUME

27

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00291-004-0173-7

DOI

http://dx.doi.org/10.1007/s00291-004-0173-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012015206


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hagen", 
          "id": "https://www.grid.ac/institutes/grid.31730.36", 
          "name": [
            "Department of Business Administration and Economics, FernUniversit\u00e4t - University of Hagen, Profilstra\u00dfe 8, 58084, Hagen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pankratz", 
        "givenName": "Giselher", 
        "id": "sg:person.015257420003.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257420003.26"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "The Pickup and Delivery Problem with Time Windows (PDPTW) is a generalization of the well studied Vehicle Routing Problem with Time Windows (VRPTW). Since it models several typical planning situations in operational transportation logistics and public transit, the PDPTW has attracted growing interest in recent years. This paper proposes a Grouping Genetic Algorithm (GGA) for solving the PDPTW which features a group-oriented genetic encoding in which each gene represents a group of requests instead of a single request. The GGA is subject to a comparative test on the basis of two publicly available benchmark problem sets that comprise 9 and 56 PDPTW instances, respectively. The results show that the proposed GGA is competitive.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00291-004-0173-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044245", 
        "issn": [
          "0171-6468", 
          "1436-6304"
        ], 
        "name": "OR Spectrum", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "A Grouping Genetic Algorithm for the Pickup and Delivery Problem with Time Windows", 
    "pagination": "21-41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "393f17175b55a154488f663a439df032ae235ad4a483d931e720316803458edf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00291-004-0173-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012015206"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00291-004-0173-7", 
      "https://app.dimensions.ai/details/publication/pub.1012015206"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00291-004-0173-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00291-004-0173-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00291-004-0173-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00291-004-0173-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00291-004-0173-7'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00291-004-0173-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N4cd4a47debeb40c0b8a8c83597e93a93
4 schema:datePublished 2005-01
5 schema:datePublishedReg 2005-01-01
6 schema:description The Pickup and Delivery Problem with Time Windows (PDPTW) is a generalization of the well studied Vehicle Routing Problem with Time Windows (VRPTW). Since it models several typical planning situations in operational transportation logistics and public transit, the PDPTW has attracted growing interest in recent years. This paper proposes a Grouping Genetic Algorithm (GGA) for solving the PDPTW which features a group-oriented genetic encoding in which each gene represents a group of requests instead of a single request. The GGA is subject to a comparative test on the basis of two publicly available benchmark problem sets that comprise 9 and 56 PDPTW instances, respectively. The results show that the proposed GGA is competitive.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N66ce089d41cb4bffbc311c0509977938
11 N6ac1f8b34b5949a481407c993ca0cb6b
12 sg:journal.1044245
13 schema:name A Grouping Genetic Algorithm for the Pickup and Delivery Problem with Time Windows
14 schema:pagination 21-41
15 schema:productId N261a9dd785fa40ebaaec461e77265d68
16 N9a4f85d41d1242d1968bc1aa73fdaa91
17 Nf5829352ad1e4e9d97cb451940b9fc8b
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012015206
19 https://doi.org/10.1007/s00291-004-0173-7
20 schema:sdDatePublished 2019-04-10T22:25
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N7867983bd6574a2f85c7fc545e22fce4
23 schema:url http://link.springer.com/10.1007/s00291-004-0173-7
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N261a9dd785fa40ebaaec461e77265d68 schema:name doi
28 schema:value 10.1007/s00291-004-0173-7
29 rdf:type schema:PropertyValue
30 N4cd4a47debeb40c0b8a8c83597e93a93 rdf:first sg:person.015257420003.26
31 rdf:rest rdf:nil
32 N66ce089d41cb4bffbc311c0509977938 schema:volumeNumber 27
33 rdf:type schema:PublicationVolume
34 N6ac1f8b34b5949a481407c993ca0cb6b schema:issueNumber 1
35 rdf:type schema:PublicationIssue
36 N7867983bd6574a2f85c7fc545e22fce4 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N9a4f85d41d1242d1968bc1aa73fdaa91 schema:name readcube_id
39 schema:value 393f17175b55a154488f663a439df032ae235ad4a483d931e720316803458edf
40 rdf:type schema:PropertyValue
41 Nf5829352ad1e4e9d97cb451940b9fc8b schema:name dimensions_id
42 schema:value pub.1012015206
43 rdf:type schema:PropertyValue
44 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
45 schema:name Biological Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
48 schema:name Genetics
49 rdf:type schema:DefinedTerm
50 sg:journal.1044245 schema:issn 0171-6468
51 1436-6304
52 schema:name OR Spectrum
53 rdf:type schema:Periodical
54 sg:person.015257420003.26 schema:affiliation https://www.grid.ac/institutes/grid.31730.36
55 schema:familyName Pankratz
56 schema:givenName Giselher
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257420003.26
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.31730.36 schema:alternateName University of Hagen
60 schema:name Department of Business Administration and Economics, FernUniversität - University of Hagen, Profilstraße 8, 58084, Hagen, Germany
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...