Thermal degradation and flammability of TiO2–polyetherimide nanocomposite fibers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-10-19

AUTHORS

Sarah Mozzaquatro Pasini, Marcos A. Batistella, Selene M. A. Guelli Ulson de Souza, Jingfeng Wang, Dachamir Hotza, Antônio Augusto Ulson de Souza

ABSTRACT

In this work, the effect of low-pressure cold plasma treatment, UV and the incorporation of TiO2 nanoparticles on thermal degradation and flammability of titanium dioxide (TiO2)/polyetherimide (PEI) nanofibers was evaluated. The morphology of nanocomposite fibers was studied using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscope (XPS), thermogravimetric analysis (TGA) and differential scanning calorimetry. SEM images of plasma- and UV-treated nanocomposites show that some samples, e.g., those treated at 248 W and 4 min of exposition, seem more brittle compared with other samples. XPS of treated PEI nanocomposite showed that cold plasma treatment breaks C–C/C–H, C–N and C–O bonds at the surface ether groups leading to an increase in carboxyl and O–C bonds. Moreover, UV treatment breaks C–C/C–H and C–N bonds. Surface modification leads also to changes in thermal stability of PEI nanofibers with a decrease of ~ 4 °C in glass transition temperature (Tg) and a reduction of ~ 200 °C in onset temperature under air compared to pristine PEI nanocomposite. Flammability results measured by pyrolysis-combustion flow calorimeter also showed a decrease in initial degradation temperature and a small increase in total heat released. Furthermore, incorporation of TiO2 nanoparticles leads, as expected, to an improved flame retardancy with a reduction of ~ 40% in peak heat release rate as a function of TiO2 content, but no significant difference was observed in onset degradation temperature observed by TGA. These results show that surface treatments do not significantly change thermal behavior of PEI nanocomposites and could be used for applications that require materials with improved characteristics. More... »

PAGES

4937-4958

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00289-019-02970-1

DOI

http://dx.doi.org/10.1007/s00289-019-02970-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121944122


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
            "Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pasini", 
        "givenName": "Sarah Mozzaquatro", 
        "id": "sg:person.013206202237.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206202237.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
            "Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batistella", 
        "givenName": "Marcos A.", 
        "id": "sg:person.07534435135.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07534435135.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
            "Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza", 
        "givenName": "Selene M. A. Guelli Ulson", 
        "id": "sg:person.01347323067.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347323067.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Engineering Research Center for Nanotechnology (NERCN), 28 East Jiangchuan Road, 200241, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Engineering Research Center for Nanotechnology (NERCN), 28 East Jiangchuan Road, 200241, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jingfeng", 
        "id": "sg:person.011330077777.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330077777.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hotza", 
        "givenName": "Dachamir", 
        "id": "sg:person.016533041676.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016533041676.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil", 
            "Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florian\u00f3polis, SC, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza", 
        "givenName": "Ant\u00f4nio Augusto Ulson", 
        "id": "sg:person.01162354456.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162354456.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-10-19", 
    "datePublishedReg": "2019-10-19", 
    "description": "In this work, the effect of low-pressure cold plasma treatment, UV and the incorporation of TiO2 nanoparticles on thermal degradation and flammability of titanium dioxide (TiO2)/polyetherimide (PEI) nanofibers was evaluated. The morphology of nanocomposite fibers was studied using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscope (XPS), thermogravimetric analysis (TGA) and differential scanning calorimetry. SEM images of plasma- and UV-treated nanocomposites show that some samples, e.g., those treated at 248\u00a0W and 4\u00a0min of exposition, seem more brittle compared with other samples. XPS of treated PEI nanocomposite showed that cold plasma treatment breaks C\u2013C/C\u2013H, C\u2013N and C\u2013O bonds at the surface ether groups leading to an increase in carboxyl and O\u2013C bonds. Moreover, UV treatment breaks C\u2013C/C\u2013H and C\u2013N bonds. Surface modification leads also to changes in thermal stability of PEI nanofibers with a decrease of\u2009~\u20094\u00a0\u00b0C in glass transition temperature (Tg) and a reduction of\u2009~\u2009200\u00a0\u00b0C in onset temperature under air compared to pristine PEI nanocomposite. Flammability results measured by pyrolysis-combustion flow calorimeter also showed a decrease in initial degradation temperature and a small increase in total heat released. Furthermore, incorporation of TiO2 nanoparticles leads, as expected, to an improved flame retardancy with a reduction of\u2009~\u200940% in peak heat release rate as a function of TiO2 content, but no significant difference was observed in onset degradation temperature observed by TGA. These results show that surface treatments do not significantly change thermal behavior of PEI nanocomposites and could be used for applications that require materials with improved characteristics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00289-019-02970-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1123778", 
        "issn": [
          "0170-0839", 
          "1436-2449"
        ], 
        "name": "Polymer Bulletin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "keywords": [
      "PEI nanocomposites", 
      "cold plasma treatment", 
      "nanocomposite fibers", 
      "pyrolysis combustion flow calorimeter", 
      "peak heat release rate", 
      "degradation temperature", 
      "plasma treatment", 
      "thermogravimetric analysis", 
      "TiO2 nanoparticles", 
      "improved flame retardancy", 
      "heat release rate", 
      "thermal degradation", 
      "ray photoelectron spectroscope", 
      "onset degradation temperature", 
      "initial degradation temperature", 
      "low pressure cold plasma treatment", 
      "glass transition temperature", 
      "flame retardancy", 
      "surface treatment", 
      "flammability results", 
      "PEI nanofibers", 
      "total heat", 
      "surface modification", 
      "titanium dioxide", 
      "nanocomposites", 
      "release rate", 
      "thermal behavior", 
      "SEM images", 
      "thermal stability", 
      "differential scanning calorimetry", 
      "flow calorimeter", 
      "onset temperature", 
      "improved characteristics", 
      "transition temperature", 
      "TiO2 content", 
      "flammability", 
      "electron microscopy", 
      "nanofibers", 
      "temperature", 
      "min of exposition", 
      "scanning calorimetry", 
      "nanoparticles", 
      "retardancy", 
      "UV treatment", 
      "fibers", 
      "heat", 
      "spectroscope", 
      "degradation", 
      "air", 
      "XPS", 
      "calorimeter", 
      "materials", 
      "dioxide", 
      "ether groups", 
      "stability", 
      "microscopy", 
      "incorporation", 
      "calorimetry", 
      "morphology", 
      "reduction", 
      "applications", 
      "results", 
      "spectroscopy", 
      "behavior", 
      "characteristics", 
      "increase", 
      "work", 
      "UV", 
      "samples", 
      "decrease", 
      "carboxyl", 
      "images", 
      "bonds", 
      "content", 
      "modification", 
      "plasma", 
      "effect", 
      "small increase", 
      "min", 
      "rate", 
      "analysis", 
      "function", 
      "changes", 
      "treatment", 
      "exposition", 
      "differences", 
      "significant differences", 
      "group", 
      "photoelectron spectroscope", 
      "UV-treated nanocomposites", 
      "surface ether groups", 
      "TiO2\u2013polyetherimide nanocomposite fibers"
    ], 
    "name": "Thermal degradation and flammability of TiO2\u2013polyetherimide nanocomposite fibers", 
    "pagination": "4937-4958", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121944122"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00289-019-02970-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00289-019-02970-1", 
      "https://app.dimensions.ai/details/publication/pub.1121944122"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_820.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00289-019-02970-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00289-019-02970-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00289-019-02970-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00289-019-02970-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00289-019-02970-1'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      119 URIs      109 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00289-019-02970-1 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Nf36a29d99357423fad77f6d3524e5511
6 schema:datePublished 2019-10-19
7 schema:datePublishedReg 2019-10-19
8 schema:description In this work, the effect of low-pressure cold plasma treatment, UV and the incorporation of TiO2 nanoparticles on thermal degradation and flammability of titanium dioxide (TiO2)/polyetherimide (PEI) nanofibers was evaluated. The morphology of nanocomposite fibers was studied using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscope (XPS), thermogravimetric analysis (TGA) and differential scanning calorimetry. SEM images of plasma- and UV-treated nanocomposites show that some samples, e.g., those treated at 248 W and 4 min of exposition, seem more brittle compared with other samples. XPS of treated PEI nanocomposite showed that cold plasma treatment breaks C–C/C–H, C–N and C–O bonds at the surface ether groups leading to an increase in carboxyl and O–C bonds. Moreover, UV treatment breaks C–C/C–H and C–N bonds. Surface modification leads also to changes in thermal stability of PEI nanofibers with a decrease of ~ 4 °C in glass transition temperature (Tg) and a reduction of ~ 200 °C in onset temperature under air compared to pristine PEI nanocomposite. Flammability results measured by pyrolysis-combustion flow calorimeter also showed a decrease in initial degradation temperature and a small increase in total heat released. Furthermore, incorporation of TiO2 nanoparticles leads, as expected, to an improved flame retardancy with a reduction of ~ 40% in peak heat release rate as a function of TiO2 content, but no significant difference was observed in onset degradation temperature observed by TGA. These results show that surface treatments do not significantly change thermal behavior of PEI nanocomposites and could be used for applications that require materials with improved characteristics.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N997e3c3de8f84190a2e2a351ea381fd4
13 Nf731f31aec234665bf907ec0d5e9298c
14 sg:journal.1123778
15 schema:keywords PEI nanocomposites
16 PEI nanofibers
17 SEM images
18 TiO2 content
19 TiO2 nanoparticles
20 TiO2–polyetherimide nanocomposite fibers
21 UV
22 UV treatment
23 UV-treated nanocomposites
24 XPS
25 air
26 analysis
27 applications
28 behavior
29 bonds
30 calorimeter
31 calorimetry
32 carboxyl
33 changes
34 characteristics
35 cold plasma treatment
36 content
37 decrease
38 degradation
39 degradation temperature
40 differences
41 differential scanning calorimetry
42 dioxide
43 effect
44 electron microscopy
45 ether groups
46 exposition
47 fibers
48 flame retardancy
49 flammability
50 flammability results
51 flow calorimeter
52 function
53 glass transition temperature
54 group
55 heat
56 heat release rate
57 images
58 improved characteristics
59 improved flame retardancy
60 incorporation
61 increase
62 initial degradation temperature
63 low pressure cold plasma treatment
64 materials
65 microscopy
66 min
67 min of exposition
68 modification
69 morphology
70 nanocomposite fibers
71 nanocomposites
72 nanofibers
73 nanoparticles
74 onset degradation temperature
75 onset temperature
76 peak heat release rate
77 photoelectron spectroscope
78 plasma
79 plasma treatment
80 pyrolysis combustion flow calorimeter
81 rate
82 ray photoelectron spectroscope
83 reduction
84 release rate
85 results
86 retardancy
87 samples
88 scanning calorimetry
89 significant differences
90 small increase
91 spectroscope
92 spectroscopy
93 stability
94 surface ether groups
95 surface modification
96 surface treatment
97 temperature
98 thermal behavior
99 thermal degradation
100 thermal stability
101 thermogravimetric analysis
102 titanium dioxide
103 total heat
104 transition temperature
105 treatment
106 work
107 schema:name Thermal degradation and flammability of TiO2–polyetherimide nanocomposite fibers
108 schema:pagination 4937-4958
109 schema:productId N811afcbdbbd8470fa7b4cd25a1d4756f
110 Nddbb5d1c01304720a284b841e33f9335
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121944122
112 https://doi.org/10.1007/s00289-019-02970-1
113 schema:sdDatePublished 2022-01-01T18:52
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Nff91edea38f9483ea2a345f6cf005ea0
116 schema:url https://doi.org/10.1007/s00289-019-02970-1
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N2520224b7b884fb1a941350c6b24feae rdf:first sg:person.01162354456.27
121 rdf:rest rdf:nil
122 N72096743ac2040659e61f0d58a0b0770 rdf:first sg:person.07534435135.84
123 rdf:rest Nbf2dc74ce4a24d959693eadbbed5a779
124 N7eeb230fc8294ec08b0157f8b4a5e911 rdf:first sg:person.016533041676.46
125 rdf:rest N2520224b7b884fb1a941350c6b24feae
126 N811afcbdbbd8470fa7b4cd25a1d4756f schema:name doi
127 schema:value 10.1007/s00289-019-02970-1
128 rdf:type schema:PropertyValue
129 N997e3c3de8f84190a2e2a351ea381fd4 schema:issueNumber 9
130 rdf:type schema:PublicationIssue
131 Nbf2dc74ce4a24d959693eadbbed5a779 rdf:first sg:person.01347323067.76
132 rdf:rest Nfc7b30d090a5439c91d77734d8c38a89
133 Nddbb5d1c01304720a284b841e33f9335 schema:name dimensions_id
134 schema:value pub.1121944122
135 rdf:type schema:PropertyValue
136 Nf36a29d99357423fad77f6d3524e5511 rdf:first sg:person.013206202237.09
137 rdf:rest N72096743ac2040659e61f0d58a0b0770
138 Nf731f31aec234665bf907ec0d5e9298c schema:volumeNumber 77
139 rdf:type schema:PublicationVolume
140 Nfc7b30d090a5439c91d77734d8c38a89 rdf:first sg:person.011330077777.35
141 rdf:rest N7eeb230fc8294ec08b0157f8b4a5e911
142 Nff91edea38f9483ea2a345f6cf005ea0 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
145 schema:name Chemical Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
148 schema:name Physical Chemistry (incl. Structural)
149 rdf:type schema:DefinedTerm
150 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
151 schema:name Engineering
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
154 schema:name Materials Engineering
155 rdf:type schema:DefinedTerm
156 sg:journal.1123778 schema:issn 0170-0839
157 1436-2449
158 schema:name Polymer Bulletin
159 schema:publisher Springer Nature
160 rdf:type schema:Periodical
161 sg:person.011330077777.35 schema:affiliation grid-institutes:None
162 schema:familyName Wang
163 schema:givenName Jingfeng
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330077777.35
165 rdf:type schema:Person
166 sg:person.01162354456.27 schema:affiliation grid-institutes:grid.411237.2
167 schema:familyName de Souza
168 schema:givenName Antônio Augusto Ulson
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162354456.27
170 rdf:type schema:Person
171 sg:person.013206202237.09 schema:affiliation grid-institutes:grid.411237.2
172 schema:familyName Pasini
173 schema:givenName Sarah Mozzaquatro
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206202237.09
175 rdf:type schema:Person
176 sg:person.01347323067.76 schema:affiliation grid-institutes:grid.411237.2
177 schema:familyName de Souza
178 schema:givenName Selene M. A. Guelli Ulson
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347323067.76
180 rdf:type schema:Person
181 sg:person.016533041676.46 schema:affiliation grid-institutes:grid.411237.2
182 schema:familyName Hotza
183 schema:givenName Dachamir
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016533041676.46
185 rdf:type schema:Person
186 sg:person.07534435135.84 schema:affiliation grid-institutes:grid.411237.2
187 schema:familyName Batistella
188 schema:givenName Marcos A.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07534435135.84
190 rdf:type schema:Person
191 grid-institutes:None schema:alternateName National Engineering Research Center for Nanotechnology (NERCN), 28 East Jiangchuan Road, 200241, Shanghai, People’s Republic of China
192 schema:name National Engineering Research Center for Nanotechnology (NERCN), 28 East Jiangchuan Road, 200241, Shanghai, People’s Republic of China
193 rdf:type schema:Organization
194 grid-institutes:grid.411237.2 schema:alternateName Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
195 Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
196 schema:name Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
197 Laboratory of Mass Transfer (LABMASSA), Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...