Fabrication of electrospun nanocomposite polyethersulfone membrane for microfiltration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08

AUTHORS

Sakine Khezli, Mojgan Zandi, Jalal Barzin

ABSTRACT

Nanocomposite membranes comprising two or more layers with different structural properties are used in filtration apparatus. In the present study, polyethersulfone (PES) nanofibrous composite membranes were fabricated by means of electrospinning and the influence of solvent type, temperature and polymer concentration on PES electrospinning process was investigated. To get bead-free nanofibers, electrospinning process parameters were optimized. To fabricate the nanocomposite membranes with varying properties five different flow rates of polymer solutions (0.1, 0.4, 0.7, 1 and 1.3 ml/h) were used. Solvent vapor treatment was carried out to enhance the mechanical properties of the nanocomposite membranes by increasing the fiber adhesion. Morphology of the membranes was studied using scanning electron microscope, and mechanical properties were evaluated by tensile test. Pore size of the membrane was assessed by bubble point method. Retention test was conducted using nanoparticle suspensions containing equally sized particles and the water flux was measured through dead-end filtration system. Finally, fabricated membranes were used for filtering out bacteria and fungus from culture media. Results show that the fiber diameter, fiber adhesion and also membrane thickness have significant impact on potential membrane retention, water flux and bacterial removal. More... »

PAGES

2265-2286

Journal

TITLE

Polymer Bulletin

ISSUE

8

VOLUME

73

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00289-016-1607-5

DOI

http://dx.doi.org/10.1007/s00289-016-1607-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014773646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Iran Polymer and Petrochemical Institute", 
          "id": "https://www.grid.ac/institutes/grid.419412.b", 
          "name": [
            "Department of Biomaterials, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/159, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khezli", 
        "givenName": "Sakine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iran Polymer and Petrochemical Institute", 
          "id": "https://www.grid.ac/institutes/grid.419412.b", 
          "name": [
            "Department of Biomaterials, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/159, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zandi", 
        "givenName": "Mojgan", 
        "id": "sg:person.01235020261.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235020261.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iran Polymer and Petrochemical Institute", 
          "id": "https://www.grid.ac/institutes/grid.419412.b", 
          "name": [
            "Department of Biomaterials, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/159, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barzin", 
        "givenName": "Jalal", 
        "id": "sg:person.0731250303.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731250303.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0266-3538(03)00178-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001647890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(03)00178-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001647890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008703719929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001698062", 
          "https://doi.org/10.1023/a:1008703719929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2009.04.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005929206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2005.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008096778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2010.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008543650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2013.11.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009800463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-3467(02)00235-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012501310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-3467(02)00235-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012501310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matpr.2015.08.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013109958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2014.07.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016953748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addr.2010.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018219847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13233-015-3086-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018467897", 
          "https://doi.org/10.1007/s13233-015-3086-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13726-012-0019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021517262", 
          "https://doi.org/10.1007/s13726-012-0019-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2006.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025667599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/polb.21831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026241708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/polb.21831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026241708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2011.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028494176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2012.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029737479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2015.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030574521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2010.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030852164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2010.08.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036384835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2004.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042972731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048232872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1591/1/1/015012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048986535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2007.05.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049750852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2010.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050003875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2009.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051683531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052381166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2115/fiber.63.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053454796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.24361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053653157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/ddf.312-315.607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072052420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/5894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098905956"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "Nanocomposite membranes comprising two or more layers with different structural properties are used in filtration apparatus. In the present study, polyethersulfone (PES) nanofibrous composite membranes were fabricated by means of electrospinning and the influence of solvent type, temperature and polymer concentration on PES electrospinning process was investigated. To get bead-free nanofibers, electrospinning process parameters were optimized. To fabricate the nanocomposite membranes with varying properties five different flow rates of polymer solutions (0.1, 0.4, 0.7, 1 and 1.3 ml/h) were used. Solvent vapor treatment was carried out to enhance the mechanical properties of the nanocomposite membranes by increasing the fiber adhesion. Morphology of the membranes was studied using scanning electron microscope, and mechanical properties were evaluated by tensile test. Pore size of the membrane was assessed by bubble point method. Retention test was conducted using nanoparticle suspensions containing equally sized particles and the water flux was measured through dead-end filtration system. Finally, fabricated membranes were used for filtering out bacteria and fungus from culture media. Results show that the fiber diameter, fiber adhesion and also membrane thickness have significant impact on potential membrane retention, water flux and bacterial removal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00289-016-1607-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1123778", 
        "issn": [
          "0170-0839", 
          "1436-2449"
        ], 
        "name": "Polymer Bulletin", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "Fabrication of electrospun nanocomposite polyethersulfone membrane for microfiltration", 
    "pagination": "2265-2286", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4662aa79553bb3681090e915c285f52eb3c89c3c9406f3a2be7ea006f92da2ef"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00289-016-1607-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014773646"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00289-016-1607-5", 
      "https://app.dimensions.ai/details/publication/pub.1014773646"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00289-016-1607-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00289-016-1607-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00289-016-1607-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00289-016-1607-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00289-016-1607-5'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00289-016-1607-5 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N4686eda987424baab3fabdbff22ae201
4 schema:citation sg:pub.10.1007/s13233-015-3086-1
5 sg:pub.10.1007/s13726-012-0019-0
6 sg:pub.10.1023/a:1008703719929
7 https://doi.org/10.1002/app.24361
8 https://doi.org/10.1002/polb.21831
9 https://doi.org/10.1016/j.addr.2010.12.002
10 https://doi.org/10.1016/j.cej.2015.05.028
11 https://doi.org/10.1016/j.desal.2010.02.027
12 https://doi.org/10.1016/j.desal.2010.11.010
13 https://doi.org/10.1016/j.jcis.2011.09.042
14 https://doi.org/10.1016/j.jcis.2012.01.012
15 https://doi.org/10.1016/j.jmatprotec.2005.11.004
16 https://doi.org/10.1016/j.matpr.2015.08.046
17 https://doi.org/10.1016/j.memsci.2004.02.029
18 https://doi.org/10.1016/j.memsci.2006.04.026
19 https://doi.org/10.1016/j.memsci.2009.04.017
20 https://doi.org/10.1016/j.memsci.2010.08.033
21 https://doi.org/10.1016/j.memsci.2010.08.041
22 https://doi.org/10.1016/j.memsci.2011.07.003
23 https://doi.org/10.1016/j.memsci.2011.12.005
24 https://doi.org/10.1016/j.memsci.2013.11.055
25 https://doi.org/10.1016/j.memsci.2014.07.062
26 https://doi.org/10.1016/j.polymer.2007.05.048
27 https://doi.org/10.1016/j.polymer.2009.04.047
28 https://doi.org/10.1016/s0266-3538(03)00178-7
29 https://doi.org/10.1016/s0925-3467(02)00235-5
30 https://doi.org/10.1088/2053-1591/1/1/015012
31 https://doi.org/10.1142/5894
32 https://doi.org/10.2115/fiber.63.307
33 https://doi.org/10.4028/www.scientific.net/ddf.312-315.607
34 schema:datePublished 2016-08
35 schema:datePublishedReg 2016-08-01
36 schema:description Nanocomposite membranes comprising two or more layers with different structural properties are used in filtration apparatus. In the present study, polyethersulfone (PES) nanofibrous composite membranes were fabricated by means of electrospinning and the influence of solvent type, temperature and polymer concentration on PES electrospinning process was investigated. To get bead-free nanofibers, electrospinning process parameters were optimized. To fabricate the nanocomposite membranes with varying properties five different flow rates of polymer solutions (0.1, 0.4, 0.7, 1 and 1.3 ml/h) were used. Solvent vapor treatment was carried out to enhance the mechanical properties of the nanocomposite membranes by increasing the fiber adhesion. Morphology of the membranes was studied using scanning electron microscope, and mechanical properties were evaluated by tensile test. Pore size of the membrane was assessed by bubble point method. Retention test was conducted using nanoparticle suspensions containing equally sized particles and the water flux was measured through dead-end filtration system. Finally, fabricated membranes were used for filtering out bacteria and fungus from culture media. Results show that the fiber diameter, fiber adhesion and also membrane thickness have significant impact on potential membrane retention, water flux and bacterial removal.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf Nc4ca9986d0fc4eda94f6d591563ce07a
41 Ne4276366ad944bcbbb57c1c2517d8afc
42 sg:journal.1123778
43 schema:name Fabrication of electrospun nanocomposite polyethersulfone membrane for microfiltration
44 schema:pagination 2265-2286
45 schema:productId N4a79b9bc8fcf4a2b8c3ac6be03d1930e
46 Nc6f427a86c6948479dd6c883adf65e01
47 Ncfe484ed3306427dbb024cb641ac75ca
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014773646
49 https://doi.org/10.1007/s00289-016-1607-5
50 schema:sdDatePublished 2019-04-11T09:55
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nf773e73177b6441f8f034b6c7636994f
53 schema:url https://link.springer.com/10.1007%2Fs00289-016-1607-5
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N17dbb7ad143b4ab2910c55c262fc2ceb rdf:first sg:person.01235020261.31
58 rdf:rest Ne1bb428d1c884ebb8a4db72f2aae672b
59 N4686eda987424baab3fabdbff22ae201 rdf:first N7201d11faf1d40e7a896cae50be6b6ed
60 rdf:rest N17dbb7ad143b4ab2910c55c262fc2ceb
61 N4a79b9bc8fcf4a2b8c3ac6be03d1930e schema:name dimensions_id
62 schema:value pub.1014773646
63 rdf:type schema:PropertyValue
64 N7201d11faf1d40e7a896cae50be6b6ed schema:affiliation https://www.grid.ac/institutes/grid.419412.b
65 schema:familyName Khezli
66 schema:givenName Sakine
67 rdf:type schema:Person
68 Nc4ca9986d0fc4eda94f6d591563ce07a schema:volumeNumber 73
69 rdf:type schema:PublicationVolume
70 Nc6f427a86c6948479dd6c883adf65e01 schema:name readcube_id
71 schema:value 4662aa79553bb3681090e915c285f52eb3c89c3c9406f3a2be7ea006f92da2ef
72 rdf:type schema:PropertyValue
73 Ncfe484ed3306427dbb024cb641ac75ca schema:name doi
74 schema:value 10.1007/s00289-016-1607-5
75 rdf:type schema:PropertyValue
76 Ne1bb428d1c884ebb8a4db72f2aae672b rdf:first sg:person.0731250303.58
77 rdf:rest rdf:nil
78 Ne4276366ad944bcbbb57c1c2517d8afc schema:issueNumber 8
79 rdf:type schema:PublicationIssue
80 Nf773e73177b6441f8f034b6c7636994f schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
86 schema:name Chemical Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1123778 schema:issn 0170-0839
89 1436-2449
90 schema:name Polymer Bulletin
91 rdf:type schema:Periodical
92 sg:person.01235020261.31 schema:affiliation https://www.grid.ac/institutes/grid.419412.b
93 schema:familyName Zandi
94 schema:givenName Mojgan
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235020261.31
96 rdf:type schema:Person
97 sg:person.0731250303.58 schema:affiliation https://www.grid.ac/institutes/grid.419412.b
98 schema:familyName Barzin
99 schema:givenName Jalal
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731250303.58
101 rdf:type schema:Person
102 sg:pub.10.1007/s13233-015-3086-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018467897
103 https://doi.org/10.1007/s13233-015-3086-1
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s13726-012-0019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021517262
106 https://doi.org/10.1007/s13726-012-0019-0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1008703719929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001698062
109 https://doi.org/10.1023/a:1008703719929
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/app.24361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053653157
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/polb.21831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026241708
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.addr.2010.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018219847
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.cej.2015.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030574521
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.desal.2010.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050003875
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.desal.2010.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030852164
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jcis.2011.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028494176
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jcis.2012.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029737479
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jmatprotec.2005.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008096778
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.matpr.2015.08.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013109958
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.memsci.2004.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042972731
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.memsci.2006.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025667599
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.memsci.2009.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051683531
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.memsci.2010.08.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036384835
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.memsci.2010.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008543650
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.memsci.2011.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052381166
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.memsci.2011.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048232872
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.memsci.2013.11.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009800463
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.memsci.2014.07.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016953748
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.polymer.2007.05.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049750852
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.polymer.2009.04.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005929206
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0266-3538(03)00178-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001647890
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0925-3467(02)00235-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012501310
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/2053-1591/1/1/015012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048986535
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1142/5894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098905956
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2115/fiber.63.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053454796
162 rdf:type schema:CreativeWork
163 https://doi.org/10.4028/www.scientific.net/ddf.312-315.607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072052420
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.419412.b schema:alternateName Iran Polymer and Petrochemical Institute
166 schema:name Department of Biomaterials, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/159, Tehran, Iran
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...