Differential calculi on noncommutative bundles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-12

AUTHORS

Markus J. Pflaum, Peter Schauenburg

ABSTRACT

We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examples of noncommutative bundles over a coquasitriangular Hopf algebra. More... »

PAGES

733-744

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002880050595

DOI

http://dx.doi.org/10.1007/s002880050595

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046568409


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Mathematisches Institut der Universit\u00e4t M\u00fcnchen, Theresienstrasse 39, D-80333, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pflaum", 
        "givenName": "Markus J.", 
        "id": "sg:person.01112260374.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112260374.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Mathematisches Institut der Universit\u00e4t M\u00fcnchen, Theresienstrasse 39, D-80333, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schauenburg", 
        "givenName": "Peter", 
        "id": "sg:person.014540532137.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540532137.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997-12", 
    "datePublishedReg": "1997-12-01", 
    "description": "We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examples of noncommutative bundles over a coquasitriangular Hopf algebra.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002880050595", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285003", 
        "issn": [
          "0170-9739", 
          "1431-5858"
        ], 
        "name": "Zeitschrift f\u00fcr Physik C Particles and Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "Differential calculi on noncommutative bundles", 
    "pagination": "733-744", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ddd57d317c11c0e01b6ffe05743e8617d9f1d9ce951cf9cab1af7042e937ff26"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002880050595"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046568409"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002880050595", 
      "https://app.dimensions.ai/details/publication/pub.1046568409"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002880050595"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002880050595'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002880050595'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002880050595'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002880050595'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002880050595 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb6ae4134fdbc480f867fdff35b3b87d1
4 schema:datePublished 1997-12
5 schema:datePublishedReg 1997-12-01
6 schema:description We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examples of noncommutative bundles over a coquasitriangular Hopf algebra.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Na9186b287c2745278b078badd3f1e7c1
11 Ne80208cc20bd46d993dc0d4138c9cdbe
12 sg:journal.1285003
13 schema:name Differential calculi on noncommutative bundles
14 schema:pagination 733-744
15 schema:productId N8884f55c84644988a4e0885d269df409
16 N9b0eacae1f7b4d2eba67033f3c9cbd90
17 Naa70ba4c88204c068948a253a01ff11b
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046568409
19 https://doi.org/10.1007/s002880050595
20 schema:sdDatePublished 2019-04-10T18:21
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Naca855555e5449149f6697998394bf52
23 schema:url http://link.springer.com/10.1007%2Fs002880050595
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N8884f55c84644988a4e0885d269df409 schema:name dimensions_id
28 schema:value pub.1046568409
29 rdf:type schema:PropertyValue
30 N9b0eacae1f7b4d2eba67033f3c9cbd90 schema:name readcube_id
31 schema:value ddd57d317c11c0e01b6ffe05743e8617d9f1d9ce951cf9cab1af7042e937ff26
32 rdf:type schema:PropertyValue
33 Na9186b287c2745278b078badd3f1e7c1 schema:issueNumber 4
34 rdf:type schema:PublicationIssue
35 Naa70ba4c88204c068948a253a01ff11b schema:name doi
36 schema:value 10.1007/s002880050595
37 rdf:type schema:PropertyValue
38 Naca855555e5449149f6697998394bf52 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Nb6ae4134fdbc480f867fdff35b3b87d1 rdf:first sg:person.01112260374.16
41 rdf:rest Nd0c804ef93744120a1b6b1db3f0bbc97
42 Nd0c804ef93744120a1b6b1db3f0bbc97 rdf:first sg:person.014540532137.22
43 rdf:rest rdf:nil
44 Ne80208cc20bd46d993dc0d4138c9cdbe schema:volumeNumber 76
45 rdf:type schema:PublicationVolume
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1285003 schema:issn 0170-9739
53 1431-5858
54 schema:name Zeitschrift für Physik C Particles and Fields
55 rdf:type schema:Periodical
56 sg:person.01112260374.16 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
57 schema:familyName Pflaum
58 schema:givenName Markus J.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112260374.16
60 rdf:type schema:Person
61 sg:person.014540532137.22 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
62 schema:familyName Schauenburg
63 schema:givenName Peter
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540532137.22
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
67 schema:name Mathematisches Institut der Universität München, Theresienstrasse 39, D-80333, München, Germany
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...