Ontology type: schema:ScholarlyArticle
1997-06
AUTHORSP. Aurenche, F. Gelis, R. Kobes, E. Petitgirard
ABSTRACTWe discuss the bremsstrahlung production of soft real and virtual photons in a quark-gluon plasma at thermal equilibrium beyond the Hard Thermal Loop (HTL) resummation. The physics is controlled by the ratio $Q^{2}/q_{0}^{2}$ of the virtuality to the energy. When $Q^{2}/q_{0}^{2} ⌈ g^{2}$ where g is the strong coupling constant, the emission rate is enhanced by a factor 1/g2 over the HTL results due to light-cone singularities and the bremsstrahlung is induced by scattering of the quark via both transverse and longitudinal soft gluon exchanges. When $Q^{2}/q_{0}^{2}$ increases, the enhancement factor is given by $q_{0}^{2}/Q^{2}$. When this ratio is near unity, the bremsstrahlung contribution is of the same order as the rate predicted by the HTL resummation. In that case, the bremsstrahlung is induced by both soft and hard gluon exchanges. More... »
PAGES315-332
http://scigraph.springernature.com/pub.10.1007/s002880050475
DOIhttp://dx.doi.org/10.1007/s002880050475
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037305392
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de Physique Th\u00e9orique ENSLAPP, B.P. 110, F-74941, Annecy-le-Vieux Cedex, France",
"id": "http://www.grid.ac/institutes/grid.464174.4",
"name": [
"Instituto Superior T\u00e9cnico, Edificio Ci\u00eanca (f\u00edsica), CFIF, P-1096, Lisboa Codex, Portugal",
"Laboratoire de Physique Th\u00e9orique ENSLAPP, B.P. 110, F-74941, Annecy-le-Vieux Cedex, France"
],
"type": "Organization"
},
"familyName": "Aurenche",
"givenName": "P.",
"id": "sg:person.011503536560.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011503536560.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Physique Th\u00e9orique ENSLAPP, B.P. 110, F-74941, Annecy-le-Vieux Cedex, France",
"id": "http://www.grid.ac/institutes/grid.464174.4",
"name": [
"Laboratoire de Physique Th\u00e9orique ENSLAPP, B.P. 110, F-74941, Annecy-le-Vieux Cedex, France"
],
"type": "Organization"
},
"familyName": "Gelis",
"givenName": "F.",
"id": "sg:person.014044263743.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014044263743.96"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physics Department and Winnipeg Institute for Theoretical Physics, University of Winnipeg, R3B 2E9, Winnipeg, Manitoba, Canada",
"id": "http://www.grid.ac/institutes/grid.267457.5",
"name": [
"Physics Department and Winnipeg Institute for Theoretical Physics, University of Winnipeg, R3B 2E9, Winnipeg, Manitoba, Canada"
],
"type": "Organization"
},
"familyName": "Kobes",
"givenName": "R.",
"id": "sg:person.010300567764.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300567764.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physics Department and Winnipeg Institute for Theoretical Physics, University of Winnipeg, R3B 2E9, Winnipeg, Manitoba, Canada",
"id": "http://www.grid.ac/institutes/grid.267457.5",
"name": [
"Physics Department and Winnipeg Institute for Theoretical Physics, University of Winnipeg, R3B 2E9, Winnipeg, Manitoba, Canada"
],
"type": "Organization"
},
"familyName": "Petitgirard",
"givenName": "E.",
"id": "sg:person.015160374125.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160374125.89"
],
"type": "Person"
}
],
"datePublished": "1997-06",
"datePublishedReg": "1997-06-01",
"description": "We discuss the bremsstrahlung production of soft real and virtual photons in a quark-gluon plasma at thermal equilibrium beyond the Hard Thermal Loop (HTL) resummation. The physics is controlled by the ratio $Q^{2}/q_{0}^{2}$ of the virtuality to the energy. When $Q^{2}/q_{0}^{2} \u2308 g^{2}$ where g is the strong coupling constant, the emission rate is enhanced by a factor 1/g2 over the HTL results due to light-cone singularities and the bremsstrahlung is induced by scattering of the quark via both transverse and longitudinal soft gluon exchanges. When $Q^{2}/q_{0}^{2}$ increases, the enhancement factor is given by $q_{0}^{2}/Q^{2}$. When this ratio is near unity, the bremsstrahlung contribution is of the same order as the rate predicted by the HTL resummation. In that case, the bremsstrahlung is induced by both soft and hard gluon exchanges.",
"genre": "article",
"id": "sg:pub.10.1007/s002880050475",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1285003",
"issn": [
"0170-9739",
"1431-5858"
],
"name": "Zeitschrift f\u00fcr Physik C Particles and Fields",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "75"
}
],
"keywords": [
"gluon exchange",
"quark-gluon plasma",
"hard thermal loop resummation",
"hard thermal loop expansion",
"strong coupling constants",
"bremsstrahlung production",
"photon production",
"hard gluon exchange",
"virtual photons",
"soft gluon exchanges",
"bremsstrahlung contribution",
"HTL results",
"thermal equilibrium",
"light-cone singularities",
"loop resummation",
"enhancement factor",
"coupling constants",
"bremsstrahlung",
"loop expansion",
"resummation",
"emission rates",
"photons",
"quarks",
"physics",
"same order",
"plasma",
"energy",
"transverse",
"constants",
"virtuality",
"singularity",
"equilibrium",
"unity",
"ratio",
"exchange",
"breakdown",
"contribution",
"expansion",
"order",
"results",
"rate",
"production",
"increase",
"cases",
"factors",
"G2"
],
"name": "Breakdown of the hard thermal loop expansion for quasi-real photons production",
"pagination": "315-332",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037305392"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002880050475"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002880050475",
"https://app.dimensions.ai/details/publication/pub.1037305392"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:46",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_300.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s002880050475"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002880050475'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002880050475'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002880050475'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002880050475'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
21 PREDICATES
72 URIs
64 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s002880050475 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | Nd6f13046d8b9433680389cbc4341af8d |
4 | ″ | schema:datePublished | 1997-06 |
5 | ″ | schema:datePublishedReg | 1997-06-01 |
6 | ″ | schema:description | We discuss the bremsstrahlung production of soft real and virtual photons in a quark-gluon plasma at thermal equilibrium beyond the Hard Thermal Loop (HTL) resummation. The physics is controlled by the ratio $Q^{2}/q_{0}^{2}$ of the virtuality to the energy. When $Q^{2}/q_{0}^{2} ⌈ g^{2}$ where g is the strong coupling constant, the emission rate is enhanced by a factor 1/g2 over the HTL results due to light-cone singularities and the bremsstrahlung is induced by scattering of the quark via both transverse and longitudinal soft gluon exchanges. When $Q^{2}/q_{0}^{2}$ increases, the enhancement factor is given by $q_{0}^{2}/Q^{2}$. When this ratio is near unity, the bremsstrahlung contribution is of the same order as the rate predicted by the HTL resummation. In that case, the bremsstrahlung is induced by both soft and hard gluon exchanges. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N235441db2e784f68aaf59fbb93254813 |
11 | ″ | ″ | Na5acbfb9a17d4abc870ca39db63c753d |
12 | ″ | ″ | sg:journal.1285003 |
13 | ″ | schema:keywords | G2 |
14 | ″ | ″ | HTL results |
15 | ″ | ″ | breakdown |
16 | ″ | ″ | bremsstrahlung |
17 | ″ | ″ | bremsstrahlung contribution |
18 | ″ | ″ | bremsstrahlung production |
19 | ″ | ″ | cases |
20 | ″ | ″ | constants |
21 | ″ | ″ | contribution |
22 | ″ | ″ | coupling constants |
23 | ″ | ″ | emission rates |
24 | ″ | ″ | energy |
25 | ″ | ″ | enhancement factor |
26 | ″ | ″ | equilibrium |
27 | ″ | ″ | exchange |
28 | ″ | ″ | expansion |
29 | ″ | ″ | factors |
30 | ″ | ″ | gluon exchange |
31 | ″ | ″ | hard gluon exchange |
32 | ″ | ″ | hard thermal loop expansion |
33 | ″ | ″ | hard thermal loop resummation |
34 | ″ | ″ | increase |
35 | ″ | ″ | light-cone singularities |
36 | ″ | ″ | loop expansion |
37 | ″ | ″ | loop resummation |
38 | ″ | ″ | order |
39 | ″ | ″ | photon production |
40 | ″ | ″ | photons |
41 | ″ | ″ | physics |
42 | ″ | ″ | plasma |
43 | ″ | ″ | production |
44 | ″ | ″ | quark-gluon plasma |
45 | ″ | ″ | quarks |
46 | ″ | ″ | rate |
47 | ″ | ″ | ratio |
48 | ″ | ″ | results |
49 | ″ | ″ | resummation |
50 | ″ | ″ | same order |
51 | ″ | ″ | singularity |
52 | ″ | ″ | soft gluon exchanges |
53 | ″ | ″ | strong coupling constants |
54 | ″ | ″ | thermal equilibrium |
55 | ″ | ″ | transverse |
56 | ″ | ″ | unity |
57 | ″ | ″ | virtual photons |
58 | ″ | ″ | virtuality |
59 | ″ | schema:name | Breakdown of the hard thermal loop expansion for quasi-real photons production |
60 | ″ | schema:pagination | 315-332 |
61 | ″ | schema:productId | Na2c86b8ae9cf447694f5258e32278978 |
62 | ″ | ″ | Nc64df5dba58b44d0b25ff8871147fa51 |
63 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037305392 |
64 | ″ | ″ | https://doi.org/10.1007/s002880050475 |
65 | ″ | schema:sdDatePublished | 2022-05-10T09:46 |
66 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
67 | ″ | schema:sdPublisher | Nc5383460e201451f8581d6681f0de0c4 |
68 | ″ | schema:url | https://doi.org/10.1007/s002880050475 |
69 | ″ | sgo:license | sg:explorer/license/ |
70 | ″ | sgo:sdDataset | articles |
71 | ″ | rdf:type | schema:ScholarlyArticle |
72 | N01060b18b21c4eccbc6a398eb009e0a9 | rdf:first | sg:person.015160374125.89 |
73 | ″ | rdf:rest | rdf:nil |
74 | N235441db2e784f68aaf59fbb93254813 | schema:volumeNumber | 75 |
75 | ″ | rdf:type | schema:PublicationVolume |
76 | N5feb7925de94419ea57a4ac543f23142 | rdf:first | sg:person.010300567764.08 |
77 | ″ | rdf:rest | N01060b18b21c4eccbc6a398eb009e0a9 |
78 | Na2c86b8ae9cf447694f5258e32278978 | schema:name | doi |
79 | ″ | schema:value | 10.1007/s002880050475 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Na5acbfb9a17d4abc870ca39db63c753d | schema:issueNumber | 2 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | Nc5383460e201451f8581d6681f0de0c4 | schema:name | Springer Nature - SN SciGraph project |
84 | ″ | rdf:type | schema:Organization |
85 | Nc64df5dba58b44d0b25ff8871147fa51 | schema:name | dimensions_id |
86 | ″ | schema:value | pub.1037305392 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | Ncd0caac12ca342fe930e8d849fbc4684 | rdf:first | sg:person.014044263743.96 |
89 | ″ | rdf:rest | N5feb7925de94419ea57a4ac543f23142 |
90 | Nd6f13046d8b9433680389cbc4341af8d | rdf:first | sg:person.011503536560.17 |
91 | ″ | rdf:rest | Ncd0caac12ca342fe930e8d849fbc4684 |
92 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Physical Sciences |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | sg:journal.1285003 | schema:issn | 0170-9739 |
99 | ″ | ″ | 1431-5858 |
100 | ″ | schema:name | Zeitschrift für Physik C Particles and Fields |
101 | ″ | schema:publisher | Springer Nature |
102 | ″ | rdf:type | schema:Periodical |
103 | sg:person.010300567764.08 | schema:affiliation | grid-institutes:grid.267457.5 |
104 | ″ | schema:familyName | Kobes |
105 | ″ | schema:givenName | R. |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300567764.08 |
107 | ″ | rdf:type | schema:Person |
108 | sg:person.011503536560.17 | schema:affiliation | grid-institutes:grid.464174.4 |
109 | ″ | schema:familyName | Aurenche |
110 | ″ | schema:givenName | P. |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011503536560.17 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.014044263743.96 | schema:affiliation | grid-institutes:grid.464174.4 |
114 | ″ | schema:familyName | Gelis |
115 | ″ | schema:givenName | F. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014044263743.96 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.015160374125.89 | schema:affiliation | grid-institutes:grid.267457.5 |
119 | ″ | schema:familyName | Petitgirard |
120 | ″ | schema:givenName | E. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160374125.89 |
122 | ″ | rdf:type | schema:Person |
123 | grid-institutes:grid.267457.5 | schema:alternateName | Physics Department and Winnipeg Institute for Theoretical Physics, University of Winnipeg, R3B 2E9, Winnipeg, Manitoba, Canada |
124 | ″ | schema:name | Physics Department and Winnipeg Institute for Theoretical Physics, University of Winnipeg, R3B 2E9, Winnipeg, Manitoba, Canada |
125 | ″ | rdf:type | schema:Organization |
126 | grid-institutes:grid.464174.4 | schema:alternateName | Laboratoire de Physique Théorique ENSLAPP, B.P. 110, F-74941, Annecy-le-Vieux Cedex, France |
127 | ″ | schema:name | Instituto Superior Técnico, Edificio Ciênca (física), CFIF, P-1096, Lisboa Codex, Portugal |
128 | ″ | ″ | Laboratoire de Physique Théorique ENSLAPP, B.P. 110, F-74941, Annecy-le-Vieux Cedex, France |
129 | ″ | rdf:type | schema:Organization |