Ontology type: schema:ScholarlyArticle Open Access: True
1998-03
AUTHORSOdo Diekmann, Mats Gyllenberg, J. A. J. Metz, Horst R. Thieme
ABSTRACT—We define a linear physiologically structured population model by two rules, one for reproduction and one for “movement” and survival. We use these ingredients to give a constructive definition of next-population-state operators. For the autonomous case we define the basic reproduction ratio R0 and the Malthusian parameter r and we compute the resolvent in terms of the Laplace transform of the ingredients. A key feature of our approach is that unbounded operators are avoided throughout. This will facilitate the treatment of nonlinear models as a next step. More... »
PAGES349-388
http://scigraph.springernature.com/pub.10.1007/s002850050104
DOIhttp://dx.doi.org/10.1007/s002850050104
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1003608737
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Centrum Wiskunde and Informatica",
"id": "https://www.grid.ac/institutes/grid.6054.7",
"name": [
"CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands e-mail:o.diekmann@math.ruu.nl, NL"
],
"type": "Organization"
},
"familyName": "Diekmann",
"givenName": "Odo",
"id": "sg:person.0642444523.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642444523.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Turku",
"id": "https://www.grid.ac/institutes/grid.1374.1",
"name": [
"Department of Mathematics, University of Turku, FIN-20500 Turku, Finland, FI"
],
"type": "Organization"
},
"familyName": "Gyllenberg",
"givenName": "Mats",
"id": "sg:person.01221043554.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221043554.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centrum Wiskunde and Informatica",
"id": "https://www.grid.ac/institutes/grid.6054.7",
"name": [
"CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands e-mail:o.diekmann@math.ruu.nl, NL"
],
"type": "Organization"
},
"familyName": "Metz",
"givenName": "J. A. J.",
"id": "sg:person.010637700172.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637700172.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Arizona State University",
"id": "https://www.grid.ac/institutes/grid.215654.1",
"name": [
"Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA, US"
],
"type": "Organization"
},
"familyName": "Thieme",
"givenName": "Horst R.",
"id": "sg:person.0677062561.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677062561.80"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/b978-012323445-2/50008-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001322731"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01162350",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020480994",
"https://doi.org/10.1007/bf01162350"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01162350",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020480994",
"https://doi.org/10.1007/bf01162350"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-247x(85)90215-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031401853"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00178324",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039188921",
"https://doi.org/10.1007/bf00178324"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00275722",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043043625",
"https://doi.org/10.1007/bf00275722"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00275722",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043043625",
"https://doi.org/10.1007/bf00275722"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00277748",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049077197",
"https://doi.org/10.1007/bf00277748"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00277748",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049077197",
"https://doi.org/10.1007/bf00277748"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/285316",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058595439"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/ss/1177011694",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064409812"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511662805",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098675410"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5962/bhl.title.27468",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099561913"
],
"type": "CreativeWork"
}
],
"datePublished": "1998-03",
"datePublishedReg": "1998-03-01",
"description": "\u2014We define a linear physiologically structured population model by two rules, one for reproduction and one for \u201cmovement\u201d and survival. We use these ingredients to give a constructive definition of next-population-state operators. For the autonomous case we define the basic reproduction ratio R0 and the Malthusian parameter r and we compute the resolvent in terms of the Laplace transform of the ingredients. A key feature of our approach is that unbounded operators are avoided throughout. This will facilitate the treatment of nonlinear models as a next step.",
"genre": "research_article",
"id": "sg:pub.10.1007/s002850050104",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1081642",
"issn": [
"0303-6812",
"1432-1416"
],
"name": "Journal of Mathematical Biology",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "36"
}
],
"name": "On the formulation and analysis of general deterministic structured population models I. Linear Theory",
"pagination": "349-388",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1130f197408c5d31b85453ae0319ef52b0077055e1ec87739194c5d9cc4ac790"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002850050104"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1003608737"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002850050104",
"https://app.dimensions.ai/details/publication/pub.1003608737"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T17:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000510.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs002850050104"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002850050104'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002850050104'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002850050104'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002850050104'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES