On the formulation and analysis of general deterministic structured population models I. Linear Theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-03

AUTHORS

Odo Diekmann, Mats Gyllenberg, J. A. J. Metz, Horst R. Thieme

ABSTRACT

—We define a linear physiologically structured population model by two rules, one for reproduction and one for “movement” and survival. We use these ingredients to give a constructive definition of next-population-state operators. For the autonomous case we define the basic reproduction ratio R0 and the Malthusian parameter r and we compute the resolvent in terms of the Laplace transform of the ingredients. A key feature of our approach is that unbounded operators are avoided throughout. This will facilitate the treatment of nonlinear models as a next step. More... »

PAGES

349-388

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002850050104

DOI

http://dx.doi.org/10.1007/s002850050104

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003608737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centrum Wiskunde and Informatica", 
          "id": "https://www.grid.ac/institutes/grid.6054.7", 
          "name": [
            "CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands e-mail:o.diekmann@math.ruu.nl, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diekmann", 
        "givenName": "Odo", 
        "id": "sg:person.0642444523.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642444523.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turku", 
          "id": "https://www.grid.ac/institutes/grid.1374.1", 
          "name": [
            "Department of Mathematics, University of Turku, FIN-20500 Turku, Finland, FI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gyllenberg", 
        "givenName": "Mats", 
        "id": "sg:person.01221043554.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221043554.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centrum Wiskunde and Informatica", 
          "id": "https://www.grid.ac/institutes/grid.6054.7", 
          "name": [
            "CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands e-mail:o.diekmann@math.ruu.nl, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Metz", 
        "givenName": "J. A. J.", 
        "id": "sg:person.010637700172.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637700172.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thieme", 
        "givenName": "Horst R.", 
        "id": "sg:person.0677062561.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677062561.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-012323445-2/50008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001322731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01162350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020480994", 
          "https://doi.org/10.1007/bf01162350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01162350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020480994", 
          "https://doi.org/10.1007/bf01162350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(85)90215-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031401853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188921", 
          "https://doi.org/10.1007/bf00178324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043043625", 
          "https://doi.org/10.1007/bf00275722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043043625", 
          "https://doi.org/10.1007/bf00275722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049077197", 
          "https://doi.org/10.1007/bf00277748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049077197", 
          "https://doi.org/10.1007/bf00277748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511662805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098675410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5962/bhl.title.27468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099561913"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-03", 
    "datePublishedReg": "1998-03-01", 
    "description": "\u2014We define a linear physiologically structured population model by two rules, one for reproduction and one for \u201cmovement\u201d and survival. We use these ingredients to give a constructive definition of next-population-state operators. For the autonomous case we define the basic reproduction ratio R0 and the Malthusian parameter r and we compute the resolvent in terms of the Laplace transform of the ingredients. A key feature of our approach is that unbounded operators are avoided throughout. This will facilitate the treatment of nonlinear models as a next step.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002850050104", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "On the formulation and analysis of general deterministic structured population models I. Linear Theory", 
    "pagination": "349-388", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1130f197408c5d31b85453ae0319ef52b0077055e1ec87739194c5d9cc4ac790"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002850050104"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003608737"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002850050104", 
      "https://app.dimensions.ai/details/publication/pub.1003608737"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002850050104"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002850050104'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002850050104'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002850050104'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002850050104'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002850050104 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N148e48d70dfb4b9ab622957bd203eb64
4 schema:citation sg:pub.10.1007/bf00178324
5 sg:pub.10.1007/bf00275722
6 sg:pub.10.1007/bf00277748
7 sg:pub.10.1007/bf01162350
8 https://doi.org/10.1016/0022-247x(85)90215-x
9 https://doi.org/10.1016/b978-012323445-2/50008-0
10 https://doi.org/10.1017/cbo9780511662805
11 https://doi.org/10.1086/285316
12 https://doi.org/10.1214/ss/1177011694
13 https://doi.org/10.5962/bhl.title.27468
14 schema:datePublished 1998-03
15 schema:datePublishedReg 1998-03-01
16 schema:description —We define a linear physiologically structured population model by two rules, one for reproduction and one for “movement” and survival. We use these ingredients to give a constructive definition of next-population-state operators. For the autonomous case we define the basic reproduction ratio R0 and the Malthusian parameter r and we compute the resolvent in terms of the Laplace transform of the ingredients. A key feature of our approach is that unbounded operators are avoided throughout. This will facilitate the treatment of nonlinear models as a next step.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N1c15d7032e9343df8a7b78d2d7547878
21 N8e906e3953ab46e08d5c7d8c7be5e279
22 sg:journal.1081642
23 schema:name On the formulation and analysis of general deterministic structured population models I. Linear Theory
24 schema:pagination 349-388
25 schema:productId N76d9cd4721f34f398e690823ca660e9c
26 Nc797d015af5245ffa2e418e1c3bd69e3
27 Nf3da03f554a14fc3ba92f9940f31ca65
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003608737
29 https://doi.org/10.1007/s002850050104
30 schema:sdDatePublished 2019-04-10T17:31
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N559e49aaa5094ee3b5fa839eeada3bc9
33 schema:url http://link.springer.com/10.1007%2Fs002850050104
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N148e48d70dfb4b9ab622957bd203eb64 rdf:first sg:person.0642444523.21
38 rdf:rest Nf98365157f3b488ea28c1731b1d4893e
39 N1c15d7032e9343df8a7b78d2d7547878 schema:volumeNumber 36
40 rdf:type schema:PublicationVolume
41 N559e49aaa5094ee3b5fa839eeada3bc9 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N68443a79cdd34a5190eeb7445423bcf5 rdf:first sg:person.010637700172.34
44 rdf:rest N748492da135b44c1a69df3cfb410bcf7
45 N748492da135b44c1a69df3cfb410bcf7 rdf:first sg:person.0677062561.80
46 rdf:rest rdf:nil
47 N76d9cd4721f34f398e690823ca660e9c schema:name dimensions_id
48 schema:value pub.1003608737
49 rdf:type schema:PropertyValue
50 N8e906e3953ab46e08d5c7d8c7be5e279 schema:issueNumber 4
51 rdf:type schema:PublicationIssue
52 Nc797d015af5245ffa2e418e1c3bd69e3 schema:name readcube_id
53 schema:value 1130f197408c5d31b85453ae0319ef52b0077055e1ec87739194c5d9cc4ac790
54 rdf:type schema:PropertyValue
55 Nf3da03f554a14fc3ba92f9940f31ca65 schema:name doi
56 schema:value 10.1007/s002850050104
57 rdf:type schema:PropertyValue
58 Nf98365157f3b488ea28c1731b1d4893e rdf:first sg:person.01221043554.40
59 rdf:rest N68443a79cdd34a5190eeb7445423bcf5
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
64 schema:name Artificial Intelligence and Image Processing
65 rdf:type schema:DefinedTerm
66 sg:journal.1081642 schema:issn 0303-6812
67 1432-1416
68 schema:name Journal of Mathematical Biology
69 rdf:type schema:Periodical
70 sg:person.010637700172.34 schema:affiliation https://www.grid.ac/institutes/grid.6054.7
71 schema:familyName Metz
72 schema:givenName J. A. J.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637700172.34
74 rdf:type schema:Person
75 sg:person.01221043554.40 schema:affiliation https://www.grid.ac/institutes/grid.1374.1
76 schema:familyName Gyllenberg
77 schema:givenName Mats
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221043554.40
79 rdf:type schema:Person
80 sg:person.0642444523.21 schema:affiliation https://www.grid.ac/institutes/grid.6054.7
81 schema:familyName Diekmann
82 schema:givenName Odo
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642444523.21
84 rdf:type schema:Person
85 sg:person.0677062561.80 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
86 schema:familyName Thieme
87 schema:givenName Horst R.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677062561.80
89 rdf:type schema:Person
90 sg:pub.10.1007/bf00178324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039188921
91 https://doi.org/10.1007/bf00178324
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00275722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043043625
94 https://doi.org/10.1007/bf00275722
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00277748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049077197
97 https://doi.org/10.1007/bf00277748
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01162350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020480994
100 https://doi.org/10.1007/bf01162350
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0022-247x(85)90215-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031401853
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/b978-012323445-2/50008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001322731
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1017/cbo9780511662805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098675410
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1086/285316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595439
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1214/ss/1177011694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409812
111 rdf:type schema:CreativeWork
112 https://doi.org/10.5962/bhl.title.27468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099561913
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.1374.1 schema:alternateName University of Turku
115 schema:name Department of Mathematics, University of Turku, FIN-20500 Turku, Finland, FI
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
118 schema:name Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA, US
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.6054.7 schema:alternateName Centrum Wiskunde and Informatica
121 schema:name CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands e-mail:o.diekmann@math.ruu.nl, NL
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...