Steady-state voltage distribution in three-dimensional cusp-shaped funnels modeled by PNP. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-09

AUTHORS

J Cartailler, D Holcman

ABSTRACT

We study here the bulk electro-diffusion properties of micro- and nanodomains containing a cusp-shaped structure in three-dimensions when the cation concentration dominates over the anions. To determine the consequences on the voltage distribution, we use the steady-state Poisson-Nernst-Planck equation with an integral constraint for the number of charges. A non-homogeneous Neumann boundary condition is imposed on the boundary. We construct an asymptotic approximation for certain surface charge distribution that agree with numerical simulations. Finally, we analyze the consequences of several piecewise constant non-homogeneous surface charge densities, motivated by designing new nanopipettes. To conclude, when electro-neutrality is broken at the scale of hundreds of nanometers, the geometry of cusp-shaped domains influences the voltage profile, specifically inside the cusp structure. The main results are summarized in the form of new three-dimensional electrostatic laws for non-electroneutral electrolytes. These formula provide a refined characterization of voltage distribution at steady-state in neuronal microdomains such as dendritic spines, but can also be used to design nanometric patch-pipettes. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-019-01353-4

DOI

http://dx.doi.org/10.1007/s00285-019-01353-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113327962

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30968199


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75005, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cartailler", 
        "givenName": "J", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "Ecole Normale Sup\u00e9rieure, 46 rue d'Ulm, 75005, Paris, France. david.holcman@ens.fr."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holcman", 
        "givenName": "D", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physd.2016.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001667351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn4022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002000828", 
          "https://doi.org/10.1038/nrn4022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002348251", 
          "https://doi.org/10.1038/nnano.2009.332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002348251", 
          "https://doi.org/10.1038/nnano.2009.332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008512565", 
          "https://doi.org/10.1038/nnano.2016.268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00217656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009313578", 
          "https://doi.org/10.1007/bf00217656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00217656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009313578", 
          "https://doi.org/10.1007/bf00217656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1085/jgp.113.4.507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013118033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.accounts.6b00395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013515551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sapm19918511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023511955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1042774986", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3103-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042774986", 
          "https://doi.org/10.1007/978-1-4939-3103-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3103-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042774986", 
          "https://doi.org/10.1007/978-1-4939-3103-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043452127", 
          "https://doi.org/10.1038/nrm2376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.31.060407.125646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050779348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.6b01095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055079852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.036116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.036116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0153039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070687037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/090752511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062856107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/110857519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062865643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140978314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1077659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00332-017-9393-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085572205", 
          "https://doi.org/10.1007/s00332-017-9393-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00332-017-9393-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085572205", 
          "https://doi.org/10.1007/s00332-017-9393-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-11590-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091585220", 
          "https://doi.org/10.1038/s41598-017-11590-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7551/mitpress/9780262013505.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099495935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1099495935", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2018.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100915040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2018.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100915040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2018.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100915040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2018.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100915040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2018.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100915040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2018.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111059101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2018.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111059101"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-09", 
    "datePublishedReg": "2019-04-09", 
    "description": "We study here the bulk electro-diffusion properties of micro- and nanodomains containing a cusp-shaped structure in three-dimensions when the cation concentration dominates over the anions. To determine the consequences on the voltage distribution, we use the steady-state Poisson-Nernst-Planck equation with an integral constraint for the number of charges. A non-homogeneous Neumann boundary condition is imposed on the boundary. We construct an asymptotic approximation for certain surface charge distribution that agree with numerical simulations. Finally, we analyze the consequences of several piecewise constant non-homogeneous surface charge densities, motivated by designing new nanopipettes. To conclude, when electro-neutrality is broken at the scale of hundreds of nanometers, the geometry of cusp-shaped domains influences the voltage profile, specifically inside the cusp structure. The main results are summarized in the form of new three-dimensional electrostatic laws for non-electroneutral electrolytes. These formula provide a refined characterization of voltage distribution at steady-state in neuronal microdomains such as dendritic spines, but can also be used to design nanometric patch-pipettes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00285-019-01353-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }
    ], 
    "name": "Steady-state voltage distribution in three-dimensional cusp-shaped funnels modeled by PNP.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-019-01353-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113327962"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30968199"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-019-01353-4", 
      "https://app.dimensions.ai/details/publication/pub.1113327962"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91462_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00285-019-01353-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01353-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01353-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01353-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01353-4'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      20 PREDICATES      50 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-019-01353-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N71fcfa48b4eb41d29ee99a8bbc563c78
4 schema:citation sg:pub.10.1007/978-1-4939-3103-3
5 sg:pub.10.1007/bf00217656
6 sg:pub.10.1007/s00332-017-9393-2
7 sg:pub.10.1038/nnano.2009.332
8 sg:pub.10.1038/nnano.2016.268
9 sg:pub.10.1038/nrm2376
10 sg:pub.10.1038/nrn4022
11 sg:pub.10.1038/s41598-017-11590-6
12 https://app.dimensions.ai/details/publication/pub.1042774986
13 https://app.dimensions.ai/details/publication/pub.1099495935
14 https://doi.org/10.1002/sapm19918511
15 https://doi.org/10.1016/j.celrep.2018.12.019
16 https://doi.org/10.1016/j.neuron.2018.01.034
17 https://doi.org/10.1016/j.physd.2016.09.001
18 https://doi.org/10.1021/acs.accounts.6b00395
19 https://doi.org/10.1021/acs.analchem.6b01095
20 https://doi.org/10.1085/jgp.113.4.507
21 https://doi.org/10.1103/physreve.64.036116
22 https://doi.org/10.1137/0153039
23 https://doi.org/10.1137/070687037
24 https://doi.org/10.1137/090752511
25 https://doi.org/10.1137/110857519
26 https://doi.org/10.1137/140978314
27 https://doi.org/10.1137/16m1077659
28 https://doi.org/10.1146/annurev.neuro.31.060407.125646
29 https://doi.org/10.7551/mitpress/9780262013505.001.0001
30 schema:datePublished 2019-04-09
31 schema:datePublishedReg 2019-04-09
32 schema:description We study here the bulk electro-diffusion properties of micro- and nanodomains containing a cusp-shaped structure in three-dimensions when the cation concentration dominates over the anions. To determine the consequences on the voltage distribution, we use the steady-state Poisson-Nernst-Planck equation with an integral constraint for the number of charges. A non-homogeneous Neumann boundary condition is imposed on the boundary. We construct an asymptotic approximation for certain surface charge distribution that agree with numerical simulations. Finally, we analyze the consequences of several piecewise constant non-homogeneous surface charge densities, motivated by designing new nanopipettes. To conclude, when electro-neutrality is broken at the scale of hundreds of nanometers, the geometry of cusp-shaped domains influences the voltage profile, specifically inside the cusp structure. The main results are summarized in the form of new three-dimensional electrostatic laws for non-electroneutral electrolytes. These formula provide a refined characterization of voltage distribution at steady-state in neuronal microdomains such as dendritic spines, but can also be used to design nanometric patch-pipettes.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf sg:journal.1081642
37 schema:name Steady-state voltage distribution in three-dimensional cusp-shaped funnels modeled by PNP.
38 schema:productId N05d15f66eb094ce594f5aee2c68b9b15
39 Nb8e19618cf5e4765aa2eb8120c2b2adc
40 Nb9e37a1836c54b9d94a946e7f0ad47ec
41 Neda3a49da62f43d6b8b914c8b482dc11
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113327962
43 https://doi.org/10.1007/s00285-019-01353-4
44 schema:sdDatePublished 2019-04-15T09:03
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nc3c0abe9f8f04848b3e1a61710968cc8
47 schema:url http://link.springer.com/10.1007/s00285-019-01353-4
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N05d15f66eb094ce594f5aee2c68b9b15 schema:name pubmed_id
52 schema:value 30968199
53 rdf:type schema:PropertyValue
54 N70414845405542d18cfbfea7c0d1b955 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
55 schema:familyName Holcman
56 schema:givenName D
57 rdf:type schema:Person
58 N71fcfa48b4eb41d29ee99a8bbc563c78 rdf:first N8a171c5c4e8d4f6698a5491957975764
59 rdf:rest Na67e3443c91d42aeb8138c98a4fa5077
60 N8a171c5c4e8d4f6698a5491957975764 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
61 schema:familyName Cartailler
62 schema:givenName J
63 rdf:type schema:Person
64 Na67e3443c91d42aeb8138c98a4fa5077 rdf:first N70414845405542d18cfbfea7c0d1b955
65 rdf:rest rdf:nil
66 Nb8e19618cf5e4765aa2eb8120c2b2adc schema:name doi
67 schema:value 10.1007/s00285-019-01353-4
68 rdf:type schema:PropertyValue
69 Nb9e37a1836c54b9d94a946e7f0ad47ec schema:name nlm_unique_id
70 schema:value 7502105
71 rdf:type schema:PropertyValue
72 Nc3c0abe9f8f04848b3e1a61710968cc8 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Neda3a49da62f43d6b8b914c8b482dc11 schema:name dimensions_id
75 schema:value pub.1113327962
76 rdf:type schema:PropertyValue
77 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
78 schema:name Chemical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Chemistry (incl. Structural)
82 rdf:type schema:DefinedTerm
83 sg:journal.1081642 schema:issn 0303-6812
84 1432-1416
85 schema:name Journal of Mathematical Biology
86 rdf:type schema:Periodical
87 sg:pub.10.1007/978-1-4939-3103-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042774986
88 https://doi.org/10.1007/978-1-4939-3103-3
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf00217656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009313578
91 https://doi.org/10.1007/bf00217656
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00332-017-9393-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085572205
94 https://doi.org/10.1007/s00332-017-9393-2
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/nnano.2009.332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002348251
97 https://doi.org/10.1038/nnano.2009.332
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/nnano.2016.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008512565
100 https://doi.org/10.1038/nnano.2016.268
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nrm2376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043452127
103 https://doi.org/10.1038/nrm2376
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nrn4022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002000828
106 https://doi.org/10.1038/nrn4022
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/s41598-017-11590-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091585220
109 https://doi.org/10.1038/s41598-017-11590-6
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1042774986 schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1099495935 schema:CreativeWork
113 https://doi.org/10.1002/sapm19918511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023511955
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.celrep.2018.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111059101
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.neuron.2018.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100915040
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.physd.2016.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667351
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/acs.accounts.6b00395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013515551
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/acs.analchem.6b01095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055079852
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1085/jgp.113.4.507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013118033
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreve.64.036116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727271
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1137/0153039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841114
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1137/070687037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851068
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1137/090752511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856107
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1137/110857519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865643
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1137/140978314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872552
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1137/16m1077659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874589
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1146/annurev.neuro.31.060407.125646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050779348
142 rdf:type schema:CreativeWork
143 https://doi.org/10.7551/mitpress/9780262013505.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099495935
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.5607.4 schema:alternateName École Normale Supérieure
146 schema:name Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
147 Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France. david.holcman@ens.fr.
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...