Low-dimensional representation of genomic sequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Richard C. Tillquist, Manuel E. Lladser

ABSTRACT

Numerous data analysis and data mining techniques require that data be embedded in a Euclidean space. When faced with symbolic datasets, particularly biological sequence data produced by high-throughput sequencing assays, conventional embedding approaches like binary and k-mer count vectors may be too high dimensional or coarse-grained to learn from the data effectively. Other representation techniques such as Multidimensional Scaling (MDS) and Node2Vec may be inadequate for large datasets as they require recomputing the full embedding from scratch when faced with new, unclassified data. To overcome these issues we amend the graph-theoretic notion of "metric dimension" to that of "multilateration." Much like trilateration can be used to represent points in the Euclidean plane by their distances to three non-colinear points, multilateration allows us to represent any node in a graph by its distances to a subset of nodes. Unfortunately, the problem of determining a minimal subset and hence the lowest dimensional embedding is NP-complete for general graphs. However, by specializing to Hamming graphs, which are particularly well suited to representing biological sequences, we can readily generate low-dimensional embeddings to map sequences of arbitrary length to a real space. As proof-of-concept, we use MDS, Node2Vec, and multilateration-based embeddings to classify DNA 20-mers centered at intron-exon boundaries. Although these different techniques perform comparably, MDS and Node2Vec potentially suffer from scalability issues with increasing sequence length whereas multilateration provides an efficient means of mapping long genomic sequences. More... »

PAGES

1-29

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-019-01348-1

DOI

http://dx.doi.org/10.1007/s00285-019-01348-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113143867

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30929047


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Computer Science, The University of Colorado, 80309-0526, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tillquist", 
        "givenName": "Richard C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Applied Mathematics, The University of Colorado, 80309-0526, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lladser", 
        "givenName": "Manuel E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02579188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004872612", 
          "https://doi.org/10.1007/bf02579188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005606384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-2001-2_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007977430", 
          "https://doi.org/10.1007/978-1-4684-2001-2_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-218x(00)00198-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009953499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010724185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.10.4.529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012616168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcss.2005.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012960718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0141287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014761536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(95)00106-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015152277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1002780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017341596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018608053", 
          "https://doi.org/10.1186/1471-2105-6-152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021077093", 
          "https://doi.org/10.1186/1471-2105-9-217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021077093", 
          "https://doi.org/10.1186/1471-2105-9-217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-007-9154-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021820865", 
          "https://doi.org/10.1007/s10589-007-9154-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-007-9154-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021820865", 
          "https://doi.org/10.1007/s10589-007-9154-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2012.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026482084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029024910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2939672.2939754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032677678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.endm.2006.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034100861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2623330.2623732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035157989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv1157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037937986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.75.10.4853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039210623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.12.8228-8235.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042157769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042916034", 
          "https://doi.org/10.1038/ismej.2010.133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/980972.980992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044043745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143844.1143874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046546824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1950.tb00463.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047158404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1002934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048522810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.5.455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050277556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m500588200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051138864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m500588200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051138864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jda.2011.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052041107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-9781(03)00100-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053178627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-9781(03)00100-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053178627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/800157.805047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053230526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0111059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062837921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050641867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177699147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064399635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069474052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074631099", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.11.1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083359290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bty178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101727892"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-30", 
    "datePublishedReg": "2019-03-30", 
    "description": "Numerous data analysis and data mining techniques require that data be embedded in a Euclidean space. When faced with symbolic datasets, particularly biological sequence data produced by high-throughput sequencing assays, conventional embedding approaches like binary and k-mer count vectors may be too high dimensional or coarse-grained to learn from the data effectively. Other representation techniques such as Multidimensional Scaling (MDS) and Node2Vec may be inadequate for large datasets as they require recomputing the full embedding from scratch when faced with new, unclassified data. To overcome these issues we amend the graph-theoretic notion of \"metric dimension\" to that of \"multilateration.\" Much like trilateration can be used to represent points in the Euclidean plane by their distances to three non-colinear points, multilateration allows us to represent any node in a graph by its distances to a subset of nodes. Unfortunately, the problem of determining a minimal subset and hence the lowest dimensional embedding is NP-complete for general graphs. However, by specializing to Hamming graphs, which are particularly well suited to representing biological sequences, we can readily generate low-dimensional embeddings to map sequences of arbitrary length to a real space. As proof-of-concept, we use MDS, Node2Vec, and multilateration-based embeddings to classify DNA 20-mers centered at intron-exon boundaries. Although these different techniques perform comparably, MDS and Node2Vec potentially suffer from scalability issues with increasing sequence length whereas multilateration provides an efficient means of mapping long genomic sequences.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00285-019-01348-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7734385", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2671520", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3131779", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }
    ], 
    "name": "Low-dimensional representation of genomic sequences", 
    "pagination": "1-29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d071d5f76b5fb69aa58fcc1cd92d41ce35fde87b8c4a8686c805d7aec1c3caa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30929047"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-019-01348-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113143867"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-019-01348-1", 
      "https://app.dimensions.ai/details/publication/pub.1113143867"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00285-019-01348-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01348-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01348-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01348-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01348-1'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      65 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-019-01348-1 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nc90e9667810f42f88fa8e85ac4722be4
4 schema:citation sg:pub.10.1007/978-1-4684-2001-2_9
5 sg:pub.10.1007/bf00994018
6 sg:pub.10.1007/bf02579188
7 sg:pub.10.1007/s10589-007-9154-5
8 sg:pub.10.1038/ismej.2010.133
9 sg:pub.10.1186/1471-2105-6-152
10 sg:pub.10.1186/1471-2105-9-217
11 https://app.dimensions.ai/details/publication/pub.1074631099
12 https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
13 https://doi.org/10.1016/0166-218x(95)00106-2
14 https://doi.org/10.1016/j.ejor.2012.02.019
15 https://doi.org/10.1016/j.endm.2006.06.003
16 https://doi.org/10.1016/j.jcss.2005.02.001
17 https://doi.org/10.1016/j.jda.2011.12.010
18 https://doi.org/10.1016/s0166-218x(00)00198-0
19 https://doi.org/10.1016/s0196-9781(03)00100-1
20 https://doi.org/10.1073/pnas.75.10.4853
21 https://doi.org/10.1074/jbc.m500588200
22 https://doi.org/10.1093/bioinformatics/17.5.455
23 https://doi.org/10.1093/bioinformatics/bty178
24 https://doi.org/10.1093/nar/gkg600
25 https://doi.org/10.1093/nar/gkh379
26 https://doi.org/10.1093/nar/gks1191
27 https://doi.org/10.1093/nar/gkv1157
28 https://doi.org/10.1101/gr.10.4.529
29 https://doi.org/10.1101/gr.8.11.1154
30 https://doi.org/10.1128/aem.71.12.8228-8235.2005
31 https://doi.org/10.1137/0111059
32 https://doi.org/10.1137/050641867
33 https://doi.org/10.1145/1143844.1143874
34 https://doi.org/10.1145/2623330.2623732
35 https://doi.org/10.1145/2939672.2939754
36 https://doi.org/10.1145/800157.805047
37 https://doi.org/10.1145/980972.980992
38 https://doi.org/10.1214/aoms/1177699147
39 https://doi.org/10.1371/journal.pone.0141287
40 https://doi.org/10.1371/journal.ppat.1002780
41 https://doi.org/10.1371/journal.ppat.1002934
42 https://doi.org/10.2307/1403797
43 schema:datePublished 2019-03-30
44 schema:datePublishedReg 2019-03-30
45 schema:description Numerous data analysis and data mining techniques require that data be embedded in a Euclidean space. When faced with symbolic datasets, particularly biological sequence data produced by high-throughput sequencing assays, conventional embedding approaches like binary and k-mer count vectors may be too high dimensional or coarse-grained to learn from the data effectively. Other representation techniques such as Multidimensional Scaling (MDS) and Node2Vec may be inadequate for large datasets as they require recomputing the full embedding from scratch when faced with new, unclassified data. To overcome these issues we amend the graph-theoretic notion of "metric dimension" to that of "multilateration." Much like trilateration can be used to represent points in the Euclidean plane by their distances to three non-colinear points, multilateration allows us to represent any node in a graph by its distances to a subset of nodes. Unfortunately, the problem of determining a minimal subset and hence the lowest dimensional embedding is NP-complete for general graphs. However, by specializing to Hamming graphs, which are particularly well suited to representing biological sequences, we can readily generate low-dimensional embeddings to map sequences of arbitrary length to a real space. As proof-of-concept, we use MDS, Node2Vec, and multilateration-based embeddings to classify DNA 20-mers centered at intron-exon boundaries. Although these different techniques perform comparably, MDS and Node2Vec potentially suffer from scalability issues with increasing sequence length whereas multilateration provides an efficient means of mapping long genomic sequences.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf sg:journal.1081642
50 schema:name Low-dimensional representation of genomic sequences
51 schema:pagination 1-29
52 schema:productId N3177e794cd6744bda24082b3e6c961c0
53 N72ae1358489b41acb12c6f52e68606ab
54 Nbda8bb29228d40779ff99794599b5e6a
55 Nc96a4fbdf4154c23ad85e4153a84853b
56 Nd13c5ab264b74b188b319b7b88a5bb8c
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113143867
58 https://doi.org/10.1007/s00285-019-01348-1
59 schema:sdDatePublished 2019-04-11T13:33
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N63a79360b7d44b28a22434c095af694d
62 schema:url https://link.springer.com/10.1007%2Fs00285-019-01348-1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N3177e794cd6744bda24082b3e6c961c0 schema:name readcube_id
67 schema:value 3d071d5f76b5fb69aa58fcc1cd92d41ce35fde87b8c4a8686c805d7aec1c3caa
68 rdf:type schema:PropertyValue
69 N33515673ac604a9eaf260797034b2b4d rdf:first N9f5ec8db172a4d65aa47e2f96f4c4858
70 rdf:rest rdf:nil
71 N4a3bfc6b66184961ae9e3c63d8a53182 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
72 schema:familyName Tillquist
73 schema:givenName Richard C.
74 rdf:type schema:Person
75 N63a79360b7d44b28a22434c095af694d schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N72ae1358489b41acb12c6f52e68606ab schema:name pubmed_id
78 schema:value 30929047
79 rdf:type schema:PropertyValue
80 N9f5ec8db172a4d65aa47e2f96f4c4858 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
81 schema:familyName Lladser
82 schema:givenName Manuel E.
83 rdf:type schema:Person
84 Nbda8bb29228d40779ff99794599b5e6a schema:name dimensions_id
85 schema:value pub.1113143867
86 rdf:type schema:PropertyValue
87 Nc90e9667810f42f88fa8e85ac4722be4 rdf:first N4a3bfc6b66184961ae9e3c63d8a53182
88 rdf:rest N33515673ac604a9eaf260797034b2b4d
89 Nc96a4fbdf4154c23ad85e4153a84853b schema:name nlm_unique_id
90 schema:value 7502105
91 rdf:type schema:PropertyValue
92 Nd13c5ab264b74b188b319b7b88a5bb8c schema:name doi
93 schema:value 10.1007/s00285-019-01348-1
94 rdf:type schema:PropertyValue
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information Systems
100 rdf:type schema:DefinedTerm
101 sg:grant.2671520 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-019-01348-1
102 rdf:type schema:MonetaryGrant
103 sg:grant.3131779 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-019-01348-1
104 rdf:type schema:MonetaryGrant
105 sg:grant.7734385 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-019-01348-1
106 rdf:type schema:MonetaryGrant
107 sg:journal.1081642 schema:issn 0303-6812
108 1432-1416
109 schema:name Journal of Mathematical Biology
110 rdf:type schema:Periodical
111 sg:pub.10.1007/978-1-4684-2001-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007977430
112 https://doi.org/10.1007/978-1-4684-2001-2_9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
115 https://doi.org/10.1007/bf00994018
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02579188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004872612
118 https://doi.org/10.1007/bf02579188
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10589-007-9154-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021820865
121 https://doi.org/10.1007/s10589-007-9154-5
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/ismej.2010.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042916034
124 https://doi.org/10.1038/ismej.2010.133
125 rdf:type schema:CreativeWork
126 sg:pub.10.1186/1471-2105-6-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018608053
127 https://doi.org/10.1186/1471-2105-6-152
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1471-2105-9-217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021077093
130 https://doi.org/10.1186/1471-2105-9-217
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1074631099 schema:CreativeWork
133 https://doi.org/10.1002/j.1538-7305.1950.tb00463.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047158404
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0166-218x(95)00106-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015152277
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ejor.2012.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026482084
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.endm.2006.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034100861
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jcss.2005.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012960718
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jda.2011.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052041107
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0166-218x(00)00198-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009953499
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0196-9781(03)00100-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053178627
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1073/pnas.75.10.4853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039210623
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1074/jbc.m500588200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051138864
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/bioinformatics/17.5.455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050277556
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/bioinformatics/bty178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101727892
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/nar/gkg600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010724185
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/nar/gkh379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029024910
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/gks1191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005606384
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/nar/gkv1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037937986
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1101/gr.10.4.529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012616168
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1101/gr.8.11.1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083359290
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1128/aem.71.12.8228-8235.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042157769
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1137/0111059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837921
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1137/050641867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846603
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/1143844.1143874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046546824
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/2623330.2623732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035157989
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1145/2939672.2939754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032677678
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1145/800157.805047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053230526
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/980972.980992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044043745
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1214/aoms/1177699147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064399635
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1371/journal.pone.0141287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014761536
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1371/journal.ppat.1002780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017341596
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1371/journal.ppat.1002934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048522810
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2307/1403797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069474052
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
196 schema:name Department of Applied Mathematics, The University of Colorado, 80309-0526, Boulder, CO, USA
197 Department of Computer Science, The University of Colorado, 80309-0526, Boulder, CO, USA
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...