SIR epidemics and vaccination on random graphs with clustering. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-10

AUTHORS

Carolina Fransson, Pieter Trapman

ABSTRACT

In this paper we consider Susceptible [Formula: see text] Infectious [Formula: see text] Recovered (SIR) epidemics on random graphs with clustering. To incorporate group structure of the underlying social network, we use a generalized version of the configuration model in which each node is a member of a specified number of triangles. SIR epidemics on this type of graph have earlier been investigated under the assumption of homogeneous infectivity and also under the assumption of Poisson transmission and recovery rates. We extend known results from literature by relaxing the assumption of homogeneous infectivity both in individual infectivity and between different kinds of neighbours. An important special case of the epidemic model analysed in this paper is epidemics in continuous time with arbitrary infectious period distribution. We use branching process approximations of the spread of the disease to provide expressions for the basic reproduction number [Formula: see text], the probability of a major outbreak and the expected final size. In addition, the impact of random vaccination with a perfect vaccine on the final outcome of the epidemic is investigated. We find that, for this particular model, [Formula: see text] equals the perfect vaccine-associated reproduction number. Generalizations to groups larger than three are discussed briefly. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-019-01347-2

DOI

http://dx.doi.org/10.1007/s00285-019-01347-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113356147

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30972440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden. carolina.fransson@math.su.se."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fransson", 
        "givenName": "Carolina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trapman", 
        "givenName": "Pieter", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.103.058701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000613947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.058701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000613947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800048977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003071141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0963548398003459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005039638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0963548398003459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005039638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-06-01148-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006940313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200021227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007445542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(75)90119-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007472911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009054722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/543520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009106648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.026121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010658355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.026121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010658355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800002172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013874495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tpb.2006.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017010330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-6698(80)80030-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018890863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019678566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2009.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021340358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2011.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023484504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2016.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024877142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2009.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027302549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.012582999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028638341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0963548398003526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033270729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036449482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-05156-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037398514", 
          "https://doi.org/10.1007/978-3-642-05156-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-05156-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037398514", 
          "https://doi.org/10.1007/978-3-642-05156-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188921", 
          "https://doi.org/10.1007/bf00178324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188921", 
          "https://doi.org/10.1007/bf00178324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2010.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039829213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2008.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040082618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.3240060204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051332521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.020901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.020901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-aap942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064393512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ejp.v18-2557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064397093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1253281063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1308662482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/jap/1214950363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064442293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/jap/1222441827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064442314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1427049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069490039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3213827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070228010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1085938323", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-50806-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085938323", 
          "https://doi.org/10.1007/978-3-319-50806-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-10", 
    "datePublishedReg": "2019-04-10", 
    "description": "In this paper we consider Susceptible [Formula: see text] Infectious [Formula: see text] Recovered (SIR) epidemics on random graphs with clustering. To incorporate group structure of the underlying social network, we use a generalized version of the configuration model in which each node is a member of a specified number of triangles. SIR epidemics on this type of graph have earlier been investigated under the assumption of homogeneous infectivity and also under the assumption of Poisson transmission and recovery rates. We extend known results from literature by relaxing the assumption of homogeneous infectivity both in individual infectivity and between different kinds of neighbours. An important special case of the epidemic model analysed in this paper is epidemics in continuous time with arbitrary infectious period distribution. We use branching process approximations of the spread of the disease to provide expressions for the basic reproduction number [Formula: see text], the probability of a major outbreak and the expected final size. In addition, the impact of random vaccination with a perfect vaccine on the final outcome of the epidemic is investigated. We find that, for this particular model, [Formula: see text] equals the perfect vaccine-associated reproduction number. Generalizations to groups larger than three are discussed briefly.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00285-019-01347-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7103818", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }
    ], 
    "name": "SIR epidemics and vaccination on random graphs with clustering.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-019-01347-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113356147"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30972440"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-019-01347-2", 
      "https://app.dimensions.ai/details/publication/pub.1113356147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56154_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00285-019-01347-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01347-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01347-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01347-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01347-2'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      20 PREDICATES      62 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-019-01347-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ncef9d79cd91945afbd126bf92f5f84e5
4 schema:citation sg:pub.10.1007/978-3-319-50806-1
5 sg:pub.10.1007/978-3-642-05156-2
6 sg:pub.10.1007/bf00178324
7 https://app.dimensions.ai/details/publication/pub.1085938323
8 https://doi.org/10.1002/rsa.20322
9 https://doi.org/10.1002/rsa.20575
10 https://doi.org/10.1002/rsa.3240060204
11 https://doi.org/10.1016/0025-5564(75)90119-4
12 https://doi.org/10.1016/j.mbs.2008.08.009
13 https://doi.org/10.1016/j.mbs.2009.06.002
14 https://doi.org/10.1016/j.mbs.2009.12.003
15 https://doi.org/10.1016/j.mbs.2010.01.006
16 https://doi.org/10.1016/j.mbs.2011.10.009
17 https://doi.org/10.1016/j.mbs.2016.01.006
18 https://doi.org/10.1016/j.tpb.2006.11.002
19 https://doi.org/10.1016/s0195-6698(80)80030-8
20 https://doi.org/10.1017/s0001867800002172
21 https://doi.org/10.1017/s0001867800048977
22 https://doi.org/10.1017/s0021900200021227
23 https://doi.org/10.1017/s0963548398003459
24 https://doi.org/10.1017/s0963548398003526
25 https://doi.org/10.1073/pnas.012582999
26 https://doi.org/10.1090/s0273-0979-06-01148-7
27 https://doi.org/10.1103/physreve.68.026121
28 https://doi.org/10.1103/physreve.76.010101
29 https://doi.org/10.1103/physreve.76.036113
30 https://doi.org/10.1103/physreve.80.020901
31 https://doi.org/10.1103/physrevlett.103.058701
32 https://doi.org/10.1155/2011/543520
33 https://doi.org/10.1214/13-aap942
34 https://doi.org/10.1214/ejp.v18-2557
35 https://doi.org/10.1239/aap/1253281063
36 https://doi.org/10.1239/aap/1308662482
37 https://doi.org/10.1239/jap/1214950363
38 https://doi.org/10.1239/jap/1222441827
39 https://doi.org/10.1371/journal.pcbi.1002042
40 https://doi.org/10.2307/1427049
41 https://doi.org/10.2307/3213827
42 schema:datePublished 2019-04-10
43 schema:datePublishedReg 2019-04-10
44 schema:description In this paper we consider Susceptible [Formula: see text] Infectious [Formula: see text] Recovered (SIR) epidemics on random graphs with clustering. To incorporate group structure of the underlying social network, we use a generalized version of the configuration model in which each node is a member of a specified number of triangles. SIR epidemics on this type of graph have earlier been investigated under the assumption of homogeneous infectivity and also under the assumption of Poisson transmission and recovery rates. We extend known results from literature by relaxing the assumption of homogeneous infectivity both in individual infectivity and between different kinds of neighbours. An important special case of the epidemic model analysed in this paper is epidemics in continuous time with arbitrary infectious period distribution. We use branching process approximations of the spread of the disease to provide expressions for the basic reproduction number [Formula: see text], the probability of a major outbreak and the expected final size. In addition, the impact of random vaccination with a perfect vaccine on the final outcome of the epidemic is investigated. We find that, for this particular model, [Formula: see text] equals the perfect vaccine-associated reproduction number. Generalizations to groups larger than three are discussed briefly.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf sg:journal.1081642
49 schema:name SIR epidemics and vaccination on random graphs with clustering.
50 schema:productId N0fe2be6e16904546b336b26cd9faf9d3
51 N5c28a80fcbe24ef9887f03e274008ffa
52 Na6d1d42117e447a2912e586604bc9215
53 Ne7565a01672740e5b83676ebe34e52d2
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113356147
55 https://doi.org/10.1007/s00285-019-01347-2
56 schema:sdDatePublished 2019-04-15T09:09
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nfe72395c4306454ca862b1634418279a
59 schema:url http://link.springer.com/10.1007/s00285-019-01347-2
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0fe2be6e16904546b336b26cd9faf9d3 schema:name dimensions_id
64 schema:value pub.1113356147
65 rdf:type schema:PropertyValue
66 N1e70d1238197405abf6c0165979fe92a schema:affiliation https://www.grid.ac/institutes/grid.10548.38
67 schema:familyName Trapman
68 schema:givenName Pieter
69 rdf:type schema:Person
70 N5c28a80fcbe24ef9887f03e274008ffa schema:name nlm_unique_id
71 schema:value 7502105
72 rdf:type schema:PropertyValue
73 N8bf04387dc7c4499b3ebacf182897949 rdf:first N1e70d1238197405abf6c0165979fe92a
74 rdf:rest rdf:nil
75 Na6d1d42117e447a2912e586604bc9215 schema:name doi
76 schema:value 10.1007/s00285-019-01347-2
77 rdf:type schema:PropertyValue
78 Ncef9d79cd91945afbd126bf92f5f84e5 rdf:first Nd3695ece58514d0c991392be1e6c2a2a
79 rdf:rest N8bf04387dc7c4499b3ebacf182897949
80 Nd3695ece58514d0c991392be1e6c2a2a schema:affiliation https://www.grid.ac/institutes/grid.10548.38
81 schema:familyName Fransson
82 schema:givenName Carolina
83 rdf:type schema:Person
84 Ne7565a01672740e5b83676ebe34e52d2 schema:name pubmed_id
85 schema:value 30972440
86 rdf:type schema:PropertyValue
87 Nfe72395c4306454ca862b1634418279a schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
93 schema:name Statistics
94 rdf:type schema:DefinedTerm
95 sg:grant.7103818 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-019-01347-2
96 rdf:type schema:MonetaryGrant
97 sg:journal.1081642 schema:issn 0303-6812
98 1432-1416
99 schema:name Journal of Mathematical Biology
100 rdf:type schema:Periodical
101 sg:pub.10.1007/978-3-319-50806-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085938323
102 https://doi.org/10.1007/978-3-319-50806-1
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-642-05156-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037398514
105 https://doi.org/10.1007/978-3-642-05156-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf00178324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039188921
108 https://doi.org/10.1007/bf00178324
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1085938323 schema:CreativeWork
111 https://doi.org/10.1002/rsa.20322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036449482
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/rsa.20575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678566
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/rsa.3240060204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051332521
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0025-5564(75)90119-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007472911
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.mbs.2008.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040082618
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.mbs.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027302549
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.mbs.2009.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021340358
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.mbs.2010.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039829213
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.mbs.2011.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023484504
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.mbs.2016.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024877142
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.tpb.2006.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017010330
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0195-6698(80)80030-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018890863
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1017/s0001867800002172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013874495
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/s0001867800048977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003071141
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1017/s0021900200021227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007445542
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1017/s0963548398003459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005039638
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1017/s0963548398003526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033270729
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1073/pnas.012582999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028638341
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1090/s0273-0979-06-01148-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006940313
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreve.68.026121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010658355
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreve.76.010101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034165685
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physreve.76.036113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040009627
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreve.80.020901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739307
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.103.058701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000613947
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1155/2011/543520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009106648
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1214/13-aap942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393512
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1214/ejp.v18-2557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064397093
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1239/aap/1253281063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440903
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1239/aap/1308662482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440998
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1239/jap/1214950363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064442293
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1239/jap/1222441827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064442314
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pcbi.1002042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009054722
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2307/1427049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069490039
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2307/3213827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228010
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
180 schema:name Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden.
181 Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden. carolina.fransson@math.su.se.
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...