A stochastic SIR network epidemic model with preventive dropping of edges View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-13

AUTHORS

Frank Ball, Tom Britton, Ka Yin Leung, David Sirl

ABSTRACT

A Markovian Susceptible [Formula: see text] Infectious [Formula: see text] Recovered (SIR) model is considered for the spread of an epidemic on a configuration model network, in which susceptible individuals may take preventive measures by dropping edges to infectious neighbours. An effective degree formulation of the model is used in conjunction with the theory of density dependent population processes to obtain a law of large numbers and a functional central limit theorem for the epidemic as the population size [Formula: see text], assuming that the degrees of individuals are bounded. A central limit theorem is conjectured for the final size of the epidemic. The results are obtained for both the Molloy-Reed (in which the degrees of individuals are deterministic) and Newman-Strogatz-Watts (in which the degrees of individuals are independent and identically distributed) versions of the configuration model. The two versions yield the same limiting deterministic model but the asymptotic variances in the central limit theorems are greater in the Newman-Strogatz-Watts version. The basic reproduction number [Formula: see text] and the process of susceptible individuals in the limiting deterministic model, for the model with dropping of edges, are the same as for a corresponding SIR model without dropping of edges but an increased recovery rate, though, when [Formula: see text], the probability of a major outbreak is greater in the model with dropping of edges. The results are specialised to the model without dropping of edges to yield conjectured central limit theorems for the final size of Markovian SIR epidemics on configuration-model networks, and for the size of the giant components of those networks. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations are good, even for moderate N. More... »

PAGES

1-77

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-019-01329-4

DOI

http://dx.doi.org/10.1007/s00285-019-01329-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112731546

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30868213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ball", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Britton", 
        "givenName": "Tom", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Ka Yin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sirl", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00285-010-0331-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000515915", 
          "https://doi.org/10.1007/s00285-010-0331-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002190020003535x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000829233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0050669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003628014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004407942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2008.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007241820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.066101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011180467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.066101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011180467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4149(03)00074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014269879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4149(03)00074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014269879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200029594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015252168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(77)90028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015850465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-016-0227-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023026", 
          "https://doi.org/10.1007/s11538-016-0227-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-016-0227-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023026", 
          "https://doi.org/10.1007/s11538-016-0227-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-6698(80)80030-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018890863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019678566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.026118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020106812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.026118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020106812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200026929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027273292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-011-0359-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027540021", 
          "https://doi.org/10.1007/s00440-011-0359-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-011-0359-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027540021", 
          "https://doi.org/10.1007/s00440-011-0359-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.208701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027839449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.208701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027839449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-016-1037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030776385", 
          "https://doi.org/10.1007/s00285-016-1037-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-016-1037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030776385", 
          "https://doi.org/10.1007/s00285-016-1037-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2014.0575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031228150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00817394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036922981", 
          "https://doi.org/10.1007/bf00817394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-016-1092-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038493628", 
          "https://doi.org/10.1007/s00285-016-1092-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-016-1092-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038493628", 
          "https://doi.org/10.1007/s00285-016-1092-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0116-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053965", 
          "https://doi.org/10.1007/s00285-007-0116-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0116-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053965", 
          "https://doi.org/10.1007/s00285-007-0116-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4896333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041665845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200013851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042268969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10441-014-9210-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045389662", 
          "https://doi.org/10.1007/s10441-014-9210-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-010-0337-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046892414", 
          "https://doi.org/10.1007/s00285-010-0337-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10867-008-9060-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050088837", 
          "https://doi.org/10.1007/s10867-008-9060-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.3240060204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051332521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.022801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.022801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-aap773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ejp.v17-1760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064396917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ejp.v18-2557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064397093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1331216645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064441038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/jap/1389370105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064442768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1426600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069489606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1427116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069490100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3211904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3214172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070228348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/16-aap1225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1085938323", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-50806-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085938323", 
          "https://doi.org/10.1007/978-3-319-50806-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-017-1155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371322", 
          "https://doi.org/10.1007/s00285-017-1155-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-017-1155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371322", 
          "https://doi.org/10.1007/s00285-017-1155-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511814068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098699402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2018.0296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106412929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17513758.2018.1515993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106525146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17513758.2018.1515993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106525146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17513758.2018.1515993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106525146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109496263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496263", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/18-aap1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111625090"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-13", 
    "datePublishedReg": "2019-03-13", 
    "description": "A Markovian Susceptible [Formula: see text] Infectious [Formula: see text] Recovered (SIR) model is considered for the spread of an epidemic on a configuration model network, in which susceptible individuals may take preventive measures by dropping edges to infectious neighbours. An effective degree formulation of the model is used in conjunction with the theory of density dependent population processes to obtain a law of large numbers and a functional central limit theorem for the epidemic as the population size [Formula: see text], assuming that the degrees of individuals are bounded. A central limit theorem is conjectured for the final size of the epidemic. The results are obtained for both the Molloy-Reed (in which the degrees of individuals are deterministic) and Newman-Strogatz-Watts (in which the degrees of individuals are independent and identically distributed) versions of the configuration model. The two versions yield the same limiting deterministic model but the asymptotic variances in the central limit theorems are greater in the Newman-Strogatz-Watts version. The basic reproduction number [Formula: see text] and the process of susceptible individuals in the limiting deterministic model, for the model with dropping of edges, are the same as for a corresponding SIR model without dropping of edges but an increased recovery rate, though, when [Formula: see text], the probability of a major outbreak is greater in the model with dropping of edges. The results are specialised to the model without dropping of edges to yield conjectured central limit theorems for the final size of Markovian SIR epidemics on configuration-model networks, and for the size of the giant components of those networks. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations are good, even for moderate N.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00285-019-01329-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3861913", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7108825", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }
    ], 
    "name": "A stochastic SIR network epidemic model with preventive dropping of edges", 
    "pagination": "1-77", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee88ff5b43c2f660dc1ea3dd3c441efa3e05d82ba31a4c4332cabf20267898a2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30868213"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-019-01329-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112731546"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-019-01329-4", 
      "https://app.dimensions.ai/details/publication/pub.1112731546"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127463_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00285-019-01329-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01329-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01329-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01329-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-019-01329-4'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      76 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-019-01329-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0f6dd37182c74ac5aec4c0430ddda8fc
4 schema:citation sg:pub.10.1007/978-3-319-50806-1
5 sg:pub.10.1007/bf00817394
6 sg:pub.10.1007/s00285-007-0116-4
7 sg:pub.10.1007/s00285-010-0331-2
8 sg:pub.10.1007/s00285-010-0337-9
9 sg:pub.10.1007/s00285-016-1037-x
10 sg:pub.10.1007/s00285-016-1092-3
11 sg:pub.10.1007/s00285-017-1155-0
12 sg:pub.10.1007/s00440-011-0359-2
13 sg:pub.10.1007/s10441-014-9210-3
14 sg:pub.10.1007/s10867-008-9060-9
15 sg:pub.10.1007/s11538-016-0227-4
16 https://app.dimensions.ai/details/publication/pub.1085938323
17 https://app.dimensions.ai/details/publication/pub.1109496263
18 https://doi.org/10.1002/9780470316658
19 https://doi.org/10.1002/rsa.20401
20 https://doi.org/10.1002/rsa.20575
21 https://doi.org/10.1002/rsa.3240060204
22 https://doi.org/10.1016/0304-4149(77)90028-x
23 https://doi.org/10.1016/j.mbs.2008.01.001
24 https://doi.org/10.1016/s0195-6698(80)80030-8
25 https://doi.org/10.1016/s0304-4149(03)00074-7
26 https://doi.org/10.1017/cbo9780511814068
27 https://doi.org/10.1017/s0021900200013851
28 https://doi.org/10.1017/s0021900200026929
29 https://doi.org/10.1017/s0021900200029594
30 https://doi.org/10.1017/s002190020003535x
31 https://doi.org/10.1063/1.4896333
32 https://doi.org/10.1080/17513758.2018.1515993
33 https://doi.org/10.1098/rsif.2014.0575
34 https://doi.org/10.1098/rsif.2018.0296
35 https://doi.org/10.1103/physreve.64.026118
36 https://doi.org/10.1103/physreve.66.016128
37 https://doi.org/10.1103/physreve.76.036113
38 https://doi.org/10.1103/physreve.77.066101
39 https://doi.org/10.1103/physreve.90.022801
40 https://doi.org/10.1103/physrevlett.96.208701
41 https://doi.org/10.1214/11-aap773
42 https://doi.org/10.1214/16-aap1225
43 https://doi.org/10.1214/18-aap1425
44 https://doi.org/10.1214/ejp.v17-1760
45 https://doi.org/10.1214/ejp.v18-2557
46 https://doi.org/10.1239/aap/1331216645
47 https://doi.org/10.1239/jap/1389370105
48 https://doi.org/10.1371/journal.pone.0050669
49 https://doi.org/10.2307/1426600
50 https://doi.org/10.2307/1427116
51 https://doi.org/10.2307/3211904
52 https://doi.org/10.2307/3212147
53 https://doi.org/10.2307/3214172
54 schema:datePublished 2019-03-13
55 schema:datePublishedReg 2019-03-13
56 schema:description A Markovian Susceptible [Formula: see text] Infectious [Formula: see text] Recovered (SIR) model is considered for the spread of an epidemic on a configuration model network, in which susceptible individuals may take preventive measures by dropping edges to infectious neighbours. An effective degree formulation of the model is used in conjunction with the theory of density dependent population processes to obtain a law of large numbers and a functional central limit theorem for the epidemic as the population size [Formula: see text], assuming that the degrees of individuals are bounded. A central limit theorem is conjectured for the final size of the epidemic. The results are obtained for both the Molloy-Reed (in which the degrees of individuals are deterministic) and Newman-Strogatz-Watts (in which the degrees of individuals are independent and identically distributed) versions of the configuration model. The two versions yield the same limiting deterministic model but the asymptotic variances in the central limit theorems are greater in the Newman-Strogatz-Watts version. The basic reproduction number [Formula: see text] and the process of susceptible individuals in the limiting deterministic model, for the model with dropping of edges, are the same as for a corresponding SIR model without dropping of edges but an increased recovery rate, though, when [Formula: see text], the probability of a major outbreak is greater in the model with dropping of edges. The results are specialised to the model without dropping of edges to yield conjectured central limit theorems for the final size of Markovian SIR epidemics on configuration-model networks, and for the size of the giant components of those networks. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations are good, even for moderate N.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf sg:journal.1081642
61 schema:name A stochastic SIR network epidemic model with preventive dropping of edges
62 schema:pagination 1-77
63 schema:productId Na5431cbca546411cb0ace0d0f5a34504
64 Nba8f795effa446c7a9dac85bc1da1883
65 Nc5a065e978984835a694ea496e692ca3
66 Ne0e9ca40ddeb46238fd614310f9ec278
67 Ned3f99bd4e3f45b6b9d013358fd03479
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112731546
69 https://doi.org/10.1007/s00285-019-01329-4
70 schema:sdDatePublished 2019-04-11T11:48
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N05b4d82b6e884ae3a48ccc5638071bce
73 schema:url https://link.springer.com/10.1007%2Fs00285-019-01329-4
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N05b4d82b6e884ae3a48ccc5638071bce schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N08ffb9bea0ae49958d0e1d71b9a2b6b2 rdf:first Nd641d771f73a42bdbb1146d70722cc94
80 rdf:rest Nbc3eb31222194b5cac11d25927950a6e
81 N0f6dd37182c74ac5aec4c0430ddda8fc rdf:first N8242f507207a421dbb68bb18bdd02f44
82 rdf:rest N08ffb9bea0ae49958d0e1d71b9a2b6b2
83 N1df47fe2b9ad4101bf92486eb6e501d7 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
84 schema:familyName Sirl
85 schema:givenName David
86 rdf:type schema:Person
87 N8242f507207a421dbb68bb18bdd02f44 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
88 schema:familyName Ball
89 schema:givenName Frank
90 rdf:type schema:Person
91 N9ede00ab9f91494881708a7191417ff0 rdf:first N1df47fe2b9ad4101bf92486eb6e501d7
92 rdf:rest rdf:nil
93 Na5431cbca546411cb0ace0d0f5a34504 schema:name doi
94 schema:value 10.1007/s00285-019-01329-4
95 rdf:type schema:PropertyValue
96 Nba8f795effa446c7a9dac85bc1da1883 schema:name pubmed_id
97 schema:value 30868213
98 rdf:type schema:PropertyValue
99 Nbc3eb31222194b5cac11d25927950a6e rdf:first Ndb9dd662061a4a1ca2c85880fdf446c9
100 rdf:rest N9ede00ab9f91494881708a7191417ff0
101 Nc5a065e978984835a694ea496e692ca3 schema:name dimensions_id
102 schema:value pub.1112731546
103 rdf:type schema:PropertyValue
104 Nd641d771f73a42bdbb1146d70722cc94 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
105 schema:familyName Britton
106 schema:givenName Tom
107 rdf:type schema:Person
108 Ndb9dd662061a4a1ca2c85880fdf446c9 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
109 schema:familyName Leung
110 schema:givenName Ka Yin
111 rdf:type schema:Person
112 Ne0e9ca40ddeb46238fd614310f9ec278 schema:name nlm_unique_id
113 schema:value 7502105
114 rdf:type schema:PropertyValue
115 Ned3f99bd4e3f45b6b9d013358fd03479 schema:name readcube_id
116 schema:value ee88ff5b43c2f660dc1ea3dd3c441efa3e05d82ba31a4c4332cabf20267898a2
117 rdf:type schema:PropertyValue
118 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
119 schema:name Mathematical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
122 schema:name Statistics
123 rdf:type schema:DefinedTerm
124 sg:grant.3861913 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-019-01329-4
125 rdf:type schema:MonetaryGrant
126 sg:grant.7108825 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-019-01329-4
127 rdf:type schema:MonetaryGrant
128 sg:journal.1081642 schema:issn 0303-6812
129 1432-1416
130 schema:name Journal of Mathematical Biology
131 rdf:type schema:Periodical
132 sg:pub.10.1007/978-3-319-50806-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085938323
133 https://doi.org/10.1007/978-3-319-50806-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf00817394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036922981
136 https://doi.org/10.1007/bf00817394
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00285-007-0116-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053965
139 https://doi.org/10.1007/s00285-007-0116-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00285-010-0331-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000515915
142 https://doi.org/10.1007/s00285-010-0331-2
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00285-010-0337-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046892414
145 https://doi.org/10.1007/s00285-010-0337-9
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00285-016-1037-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030776385
148 https://doi.org/10.1007/s00285-016-1037-x
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00285-016-1092-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038493628
151 https://doi.org/10.1007/s00285-016-1092-3
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00285-017-1155-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090371322
154 https://doi.org/10.1007/s00285-017-1155-0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00440-011-0359-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027540021
157 https://doi.org/10.1007/s00440-011-0359-2
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10441-014-9210-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045389662
160 https://doi.org/10.1007/s10441-014-9210-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s10867-008-9060-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050088837
163 https://doi.org/10.1007/s10867-008-9060-9
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11538-016-0227-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023026
166 https://doi.org/10.1007/s11538-016-0227-4
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1085938323 schema:CreativeWork
169 https://app.dimensions.ai/details/publication/pub.1109496263 schema:CreativeWork
170 https://doi.org/10.1002/9780470316658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496263
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/rsa.20401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004407942
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/rsa.20575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678566
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/rsa.3240060204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051332521
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0304-4149(77)90028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015850465
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.mbs.2008.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007241820
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0195-6698(80)80030-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018890863
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0304-4149(03)00074-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014269879
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1017/cbo9780511814068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098699402
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1017/s0021900200013851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042268969
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1017/s0021900200026929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027273292
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1017/s0021900200029594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015252168
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1017/s002190020003535x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000829233
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.4896333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041665845
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/17513758.2018.1515993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106525146
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1098/rsif.2014.0575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031228150
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1098/rsif.2018.0296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106412929
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physreve.64.026118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020106812
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreve.66.016128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023034919
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physreve.76.036113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040009627
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreve.77.066101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011180467
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physreve.90.022801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746545
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.96.208701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027839449
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1214/11-aap773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392003
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1214/16-aap1225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642712
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1214/18-aap1425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111625090
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1214/ejp.v17-1760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064396917
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1214/ejp.v18-2557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064397093
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1239/aap/1331216645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064441038
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1239/jap/1389370105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064442768
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1371/journal.pone.0050669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003628014
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2307/1426600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069489606
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2307/1427116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069490100
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2307/3211904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226144
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2307/3212147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226373
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2307/3214172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228348
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
243 schema:name Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
246 schema:name School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...