The relationships between message passing, pairwise, Kermack–McKendrick and stochastic SIR epidemic models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Robert R. Wilkinson, Frank G. Ball, Kieran J. Sharkey

ABSTRACT

We consider a very general stochastic model for an SIR epidemic on a network which allows an individual's infectious period, and the time it takes to contact each of its neighbours after becoming infected, to be correlated. We write down the message passing system of equations for this model and prove, for the first time, that it has a unique feasible solution. We also generalise an earlier result by proving that this solution provides a rigorous upper bound for the expected epidemic size (cumulative number of infection events) at any fixed time [Formula: see text]. We specialise these results to a homogeneous special case where the graph (network) is symmetric. The message passing system here reduces to just four equations. We prove that cycles in the network inhibit the spread of infection, and derive important epidemiological results concerning the final epidemic size and threshold behaviour for a major outbreak. For Poisson contact processes, this message passing system is equivalent to a non-Markovian pair approximation model, which we show has well-known pairwise models as special cases. We show further that a sequence of message passing systems, starting with the homogeneous one just described, converges to the deterministic Kermack-McKendrick equations for this stochastic model. For Poisson contact and recovery, we show that this convergence is monotone, from which it follows that the message passing system (and hence also the pairwise model) here provides a better approximation to the expected epidemic size at time [Formula: see text] than the Kermack-McKendrick model. More... »

PAGES

1563-1590

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-017-1123-8

DOI

http://dx.doi.org/10.1007/s00285-017-1123-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084804574

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28409223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Communicable Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Liverpool", 
          "id": "https://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "The University of Liverpool, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilkinson", 
        "givenName": "Robert R.", 
        "id": "sg:person.0777337521.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777337521.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ball", 
        "givenName": "Frank G.", 
        "id": "sg:person.01263674502.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263674502.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Liverpool", 
          "id": "https://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "The University of Liverpool, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharkey", 
        "givenName": "Kieran J.", 
        "id": "sg:person.01247307077.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247307077.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s002190020003535x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000829233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1006414857", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0163-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006414857", 
          "https://doi.org/10.1007/978-1-4613-0163-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0163-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006414857", 
          "https://doi.org/10.1007/978-1-4613-0163-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2008.0524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009942507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2011.0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013768186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jpr.2016.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014669321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.022808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016232105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.022808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016232105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200015072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018913602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/284909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024734151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.016101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024746727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.016101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024746727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177698701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027236230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200026929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027273292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.039904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027862309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.039904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027862309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-016-1037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030776385", 
          "https://doi.org/10.1007/s00285-016-1037-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-016-1037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030776385", 
          "https://doi.org/10.1007/s00285-016-1037-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1999.0716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030804304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-008-0161-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035359466", 
          "https://doi.org/10.1007/s00285-008-0161-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-008-0161-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035359466", 
          "https://doi.org/10.1007/s00285-008-0161-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0116-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053965", 
          "https://doi.org/10.1007/s00285-007-0116-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0116-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053965", 
          "https://doi.org/10.1007/s00285-007-0116-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800039690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042013142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(93)90017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044314342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-010-0344-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044901783", 
          "https://doi.org/10.1007/s00285-010-0344-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-010-0337-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046892414", 
          "https://doi.org/10.1007/s00285-010-0337-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200035841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047589603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1927.0118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047710630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-012-9749-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048290556", 
          "https://doi.org/10.1007/s11538-012-9749-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2007.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049548481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.078701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.078701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ejp.v18-2557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064397093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-017-1155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371322", 
          "https://doi.org/10.1007/s00285-017-1155-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-017-1155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371322", 
          "https://doi.org/10.1007/s00285-017-1155-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511569395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098728383"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We consider a very general stochastic model for an SIR epidemic on a network which allows an individual's infectious period, and the time it takes to contact each of its neighbours after becoming infected, to be correlated. We write down the message passing system of equations for this model and prove, for the first time, that it has a unique feasible solution. We also generalise an earlier result by proving that this solution provides a rigorous upper bound for the expected epidemic size (cumulative number of infection events) at any fixed time [Formula: see text]. We specialise these results to a homogeneous special case where the graph (network) is symmetric. The message passing system here reduces to just four equations. We prove that cycles in the network inhibit the spread of infection, and derive important epidemiological results concerning the final epidemic size and threshold behaviour for a major outbreak. For Poisson contact processes, this message passing system is equivalent to a non-Markovian pair approximation model, which we show has well-known pairwise models as special cases. We show further that a sequence of message passing systems, starting with the homogeneous one just described, converges to the deterministic Kermack-McKendrick equations for this stochastic model. For Poisson contact and recovery, we show that this convergence is monotone, from which it follows that the message passing system (and hence also the pairwise model) here provides a better approximation to the expected epidemic size at time [Formula: see text] than the Kermack-McKendrick model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00285-017-1123-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6-7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "The relationships between message passing, pairwise, Kermack\u2013McKendrick and stochastic SIR epidemic models", 
    "pagination": "1563-1590", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "18403b816565bc00cd912d5d083901c7f9c6fb42a324ba4f09613e8535f43b31"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28409223"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-017-1123-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084804574"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-017-1123-8", 
      "https://app.dimensions.ai/details/publication/pub.1084804574"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00285-017-1123-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-017-1123-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-017-1123-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-017-1123-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-017-1123-8'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      67 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-017-1123-8 schema:about N538358357d2d46c69eb736087b1159b9
2 N5cace695760349dc946f279016f3d767
3 N671597045df2473da89833a5ccb19ab7
4 Nded4f7523a7c45e581be4d0d2d62e92a
5 Ne2801f580e4a4617823bc1d47695f101
6 Ne75d42c150e94ed3bf385f08c906282e
7 Ned3484defed94fd2b26d65b1aa4b77e7
8 Nf8f1143c6cf44c829124822d74f8b4ee
9 anzsrc-for:01
10 anzsrc-for:0104
11 schema:author N8995bf4d08f84402b9340435b889eecc
12 schema:citation sg:pub.10.1007/978-1-4613-0163-9
13 sg:pub.10.1007/s00285-007-0116-4
14 sg:pub.10.1007/s00285-008-0161-7
15 sg:pub.10.1007/s00285-010-0337-9
16 sg:pub.10.1007/s00285-010-0344-x
17 sg:pub.10.1007/s00285-016-1037-x
18 sg:pub.10.1007/s00285-017-1155-0
19 sg:pub.10.1007/s11538-012-9749-6
20 https://app.dimensions.ai/details/publication/pub.1006414857
21 https://doi.org/10.1016/0025-5564(93)90017-5
22 https://doi.org/10.1016/j.mbs.2007.05.011
23 https://doi.org/10.1017/cbo9780511569395
24 https://doi.org/10.1017/jpr.2016.62
25 https://doi.org/10.1017/s0001867800039690
26 https://doi.org/10.1017/s0021900200015072
27 https://doi.org/10.1017/s0021900200026929
28 https://doi.org/10.1017/s002190020003535x
29 https://doi.org/10.1017/s0021900200035841
30 https://doi.org/10.1098/rsif.2008.0524
31 https://doi.org/10.1098/rsif.2011.0403
32 https://doi.org/10.1098/rspa.1927.0118
33 https://doi.org/10.1098/rspb.1999.0716
34 https://doi.org/10.1103/physreve.82.016101
35 https://doi.org/10.1103/physreve.89.022808
36 https://doi.org/10.1103/physreve.92.039904
37 https://doi.org/10.1103/physrevlett.115.078701
38 https://doi.org/10.1103/revmodphys.87.925
39 https://doi.org/10.1155/2011/284909
40 https://doi.org/10.1214/aoms/1177698701
41 https://doi.org/10.1214/ejp.v18-2557
42 schema:datePublished 2017-12
43 schema:datePublishedReg 2017-12-01
44 schema:description We consider a very general stochastic model for an SIR epidemic on a network which allows an individual's infectious period, and the time it takes to contact each of its neighbours after becoming infected, to be correlated. We write down the message passing system of equations for this model and prove, for the first time, that it has a unique feasible solution. We also generalise an earlier result by proving that this solution provides a rigorous upper bound for the expected epidemic size (cumulative number of infection events) at any fixed time [Formula: see text]. We specialise these results to a homogeneous special case where the graph (network) is symmetric. The message passing system here reduces to just four equations. We prove that cycles in the network inhibit the spread of infection, and derive important epidemiological results concerning the final epidemic size and threshold behaviour for a major outbreak. For Poisson contact processes, this message passing system is equivalent to a non-Markovian pair approximation model, which we show has well-known pairwise models as special cases. We show further that a sequence of message passing systems, starting with the homogeneous one just described, converges to the deterministic Kermack-McKendrick equations for this stochastic model. For Poisson contact and recovery, we show that this convergence is monotone, from which it follows that the message passing system (and hence also the pairwise model) here provides a better approximation to the expected epidemic size at time [Formula: see text] than the Kermack-McKendrick model.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N313bd22307384e94a7c0d154c69e8d7c
49 Na4ab0e7cd0d541598ee6a967bc68fb65
50 sg:journal.1081642
51 schema:name The relationships between message passing, pairwise, Kermack–McKendrick and stochastic SIR epidemic models
52 schema:pagination 1563-1590
53 schema:productId N1b7cb771e2354879a1cc75a0dfe665df
54 N277c9deb123542a094918f7fd4dd186d
55 N2c1105109d2343e28067ae276becef20
56 N3d8bbfacbffe4514a6417862232b4c5d
57 Nc4cd7336448d42709a2ecb72cb31a67a
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084804574
59 https://doi.org/10.1007/s00285-017-1123-8
60 schema:sdDatePublished 2019-04-11T12:28
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N576cab94085a48dfbf3a646a0d402d03
63 schema:url https://link.springer.com/10.1007%2Fs00285-017-1123-8
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N12d7331f87eb48bcad7578485e09ed2a rdf:first sg:person.01247307077.50
68 rdf:rest rdf:nil
69 N1b7cb771e2354879a1cc75a0dfe665df schema:name nlm_unique_id
70 schema:value 7502105
71 rdf:type schema:PropertyValue
72 N277c9deb123542a094918f7fd4dd186d schema:name readcube_id
73 schema:value 18403b816565bc00cd912d5d083901c7f9c6fb42a324ba4f09613e8535f43b31
74 rdf:type schema:PropertyValue
75 N2c1105109d2343e28067ae276becef20 schema:name pubmed_id
76 schema:value 28409223
77 rdf:type schema:PropertyValue
78 N313bd22307384e94a7c0d154c69e8d7c schema:volumeNumber 75
79 rdf:type schema:PublicationVolume
80 N3d8bbfacbffe4514a6417862232b4c5d schema:name dimensions_id
81 schema:value pub.1084804574
82 rdf:type schema:PropertyValue
83 N538358357d2d46c69eb736087b1159b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Mathematical Concepts
85 rdf:type schema:DefinedTerm
86 N576cab94085a48dfbf3a646a0d402d03 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N5cace695760349dc946f279016f3d767 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Poisson Distribution
90 rdf:type schema:DefinedTerm
91 N671597045df2473da89833a5ccb19ab7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Models, Statistical
93 rdf:type schema:DefinedTerm
94 N8995bf4d08f84402b9340435b889eecc rdf:first sg:person.0777337521.69
95 rdf:rest Ned9eeb208a7643a3a56e106783f23558
96 Na4ab0e7cd0d541598ee6a967bc68fb65 schema:issueNumber 6-7
97 rdf:type schema:PublicationIssue
98 Nc4cd7336448d42709a2ecb72cb31a67a schema:name doi
99 schema:value 10.1007/s00285-017-1123-8
100 rdf:type schema:PropertyValue
101 Nded4f7523a7c45e581be4d0d2d62e92a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Communicable Diseases
103 rdf:type schema:DefinedTerm
104 Ne2801f580e4a4617823bc1d47695f101 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Stochastic Processes
106 rdf:type schema:DefinedTerm
107 Ne75d42c150e94ed3bf385f08c906282e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Epidemics
109 rdf:type schema:DefinedTerm
110 Ned3484defed94fd2b26d65b1aa4b77e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Humans
112 rdf:type schema:DefinedTerm
113 Ned9eeb208a7643a3a56e106783f23558 rdf:first sg:person.01263674502.76
114 rdf:rest N12d7331f87eb48bcad7578485e09ed2a
115 Nf8f1143c6cf44c829124822d74f8b4ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Models, Biological
117 rdf:type schema:DefinedTerm
118 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
119 schema:name Mathematical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
122 schema:name Statistics
123 rdf:type schema:DefinedTerm
124 sg:journal.1081642 schema:issn 0303-6812
125 1432-1416
126 schema:name Journal of Mathematical Biology
127 rdf:type schema:Periodical
128 sg:person.01247307077.50 schema:affiliation https://www.grid.ac/institutes/grid.10025.36
129 schema:familyName Sharkey
130 schema:givenName Kieran J.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247307077.50
132 rdf:type schema:Person
133 sg:person.01263674502.76 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
134 schema:familyName Ball
135 schema:givenName Frank G.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263674502.76
137 rdf:type schema:Person
138 sg:person.0777337521.69 schema:affiliation https://www.grid.ac/institutes/grid.10025.36
139 schema:familyName Wilkinson
140 schema:givenName Robert R.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777337521.69
142 rdf:type schema:Person
143 sg:pub.10.1007/978-1-4613-0163-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006414857
144 https://doi.org/10.1007/978-1-4613-0163-9
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s00285-007-0116-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053965
147 https://doi.org/10.1007/s00285-007-0116-4
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00285-008-0161-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035359466
150 https://doi.org/10.1007/s00285-008-0161-7
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00285-010-0337-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046892414
153 https://doi.org/10.1007/s00285-010-0337-9
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00285-010-0344-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044901783
156 https://doi.org/10.1007/s00285-010-0344-x
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00285-016-1037-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030776385
159 https://doi.org/10.1007/s00285-016-1037-x
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00285-017-1155-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090371322
162 https://doi.org/10.1007/s00285-017-1155-0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11538-012-9749-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048290556
165 https://doi.org/10.1007/s11538-012-9749-6
166 rdf:type schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1006414857 schema:CreativeWork
168 https://doi.org/10.1016/0025-5564(93)90017-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044314342
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.mbs.2007.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548481
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1017/cbo9780511569395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098728383
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1017/jpr.2016.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014669321
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1017/s0001867800039690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042013142
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1017/s0021900200015072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913602
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1017/s0021900200026929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027273292
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1017/s002190020003535x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000829233
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1017/s0021900200035841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047589603
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1098/rsif.2008.0524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009942507
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1098/rsif.2011.0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013768186
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1098/rspa.1927.0118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047710630
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1098/rspb.1999.0716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030804304
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physreve.82.016101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024746727
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physreve.89.022808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016232105
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physreve.92.039904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027862309
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.115.078701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763954
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/revmodphys.87.925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034261529
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1155/2011/284909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024734151
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1214/aoms/1177698701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027236230
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1214/ejp.v18-2557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064397093
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.10025.36 schema:alternateName University of Liverpool
211 schema:name The University of Liverpool, Liverpool, UK
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
214 schema:name School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...