The steady state of epidermis: mathematical modeling and numerical simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04-16

AUTHORS

Alberto Gandolfi, Mimmo Iannelli, Gabriela Marinoschi

ABSTRACT

We consider a model with age and space structure for the epidermis evolution. The model, previously presented and analyzed with respect to the suprabasal epidermis, includes different types of cells (proliferating cells, differentiated cells, corneous cells, and apoptotic cells) moving with the same velocity, under the constraint that the local volume fraction occupied by the cells is constant in space and time. Here, we complete the model proposing a mechanism regulating the cell production in the basal layer and we focus on the stationary case of the problem, i.e. on the case corresponding to the normal status of the skin. A numerical scheme to compute the solution of the model is proposed and its convergence is studied. Simulations are provided for realistic values of the parameters, showing the possibility of reproducing the structure of both “thin” and “thick” epidermis. More... »

PAGES

1595-1626

References to SciGraph publications

  • 1998-12. Epidermal Cell Kinetics by Combining In Situ Hybridization and Immunohistochemistry in JOURNAL OF MOLECULAR HISTOLOGY
  • 2010-02-23. An age-structured model of epidermis growth in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2007-02-28. A single type of progenitor cell maintains normal epidermis in NATURE
  • 2007-02-21. Pathogenesis and therapy of psoriasis in NATURE
  • 1987-12. Epidermal cell proliferation in VIRCHOWS ARCHIV B CELL PATHOLOGY
  • 2013-03-24. Time evolution for a model of epidermis growth in JOURNAL OF EVOLUTION EQUATIONS
  • 2012-09-02. Distinct contribution of stem and progenitor cells to epidermal maintenance in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00285-016-1006-4

    DOI

    http://dx.doi.org/10.1007/s00285-016-1006-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049693884

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27085354


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Proliferation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epidermal Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epidermis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d-CNR, Via dei Taurini 19, 00185, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419461.f", 
              "name": [
                "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d-CNR, Via dei Taurini 19, 00185, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gandolfi", 
            "givenName": "Alberto", 
            "id": "sg:person.0623363352.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Trento, Via Sommarive 14, Povo, 38123, Trento, Italy", 
              "id": "http://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Department of Mathematics, University of Trento, Via Sommarive 14, Povo, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iannelli", 
            "givenName": "Mimmo", 
            "id": "sg:person.0674740605.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674740605.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie 13, 050711, Bucharest, Romania", 
              "id": "http://www.grid.ac/institutes/grid.418333.e", 
              "name": [
                "Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie 13, 050711, Bucharest, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marinoschi", 
            "givenName": "Gabriela", 
            "id": "sg:person.016167643555.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167643555.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02890255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006338646", 
              "https://doi.org/10.1007/bf02890255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053417123", 
              "https://doi.org/10.1038/nature11393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042009462", 
              "https://doi.org/10.1038/nature05574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00028-013-0188-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042143275", 
              "https://doi.org/10.1007/s00028-013-0188-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1003457709690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021329635", 
              "https://doi.org/10.1023/a:1003457709690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-010-0330-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005239728", 
              "https://doi.org/10.1007/s00285-010-0330-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034746284", 
              "https://doi.org/10.1038/nature05663"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-04-16", 
        "datePublishedReg": "2016-04-16", 
        "description": "We consider a model with age and space structure for the epidermis evolution. The model, previously presented and analyzed with respect to the suprabasal epidermis, includes different types of cells (proliferating cells, differentiated cells, corneous cells, and apoptotic cells) moving with the same velocity, under the constraint that the local volume fraction occupied by the cells is constant in space and time. Here, we complete the model proposing a mechanism regulating the cell production in the basal layer and we focus on the stationary case of the problem, i.e. on the case corresponding to the normal status of the skin. A numerical scheme to compute the solution of the model is proposed and its convergence is studied. Simulations are provided for realistic values of the parameters, showing the possibility of reproducing the structure of both \u201cthin\u201d and \u201cthick\u201d epidermis.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00285-016-1006-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1081642", 
            "issn": [
              "0303-6812", 
              "1432-1416"
            ], 
            "name": "Journal of Mathematical Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6-7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "73"
          }
        ], 
        "keywords": [
          "model", 
          "space structure", 
          "local volume fraction", 
          "stationary case", 
          "numerical scheme", 
          "convergence", 
          "simulations", 
          "steady state", 
          "mathematical modeling", 
          "numerical simulations", 
          "structure", 
          "evolution", 
          "respect", 
          "different types", 
          "same velocity", 
          "velocity", 
          "constraints", 
          "volume fraction", 
          "space", 
          "cases", 
          "problem", 
          "scheme", 
          "solution", 
          "realistic values", 
          "parameters", 
          "state", 
          "modeling", 
          "age", 
          "suprabasal epidermis", 
          "epidermis", 
          "types", 
          "cells", 
          "fraction", 
          "time", 
          "mechanism", 
          "cell production", 
          "production", 
          "basal layer", 
          "layer", 
          "normal status", 
          "status", 
          "values", 
          "possibility", 
          "epidermis evolution", 
          "skin"
        ], 
        "name": "The steady state of epidermis: mathematical modeling and numerical simulations", 
        "pagination": "1595-1626", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049693884"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00285-016-1006-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27085354"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00285-016-1006-4", 
          "https://app.dimensions.ai/details/publication/pub.1049693884"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_707.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00285-016-1006-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-016-1006-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-016-1006-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-016-1006-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-016-1006-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      22 PREDICATES      85 URIs      70 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00285-016-1006-4 schema:about N11a1c9c730c94db7a7d22b8574940e27
    2 N4ac1eec2275d449f8c6fb6fd94a52eb6
    3 N5873289b84f548d7bd6bdf407b857e5a
    4 Nc669136217f846df8b78e097724fd0bd
    5 Ne7118ad99dd843c1ae26c5b6e404b9f0
    6 Ne7f60bf63a05428c8d2c9093f3220459
    7 Nf1c23b414bbe4ec095abf647a8b945c7
    8 anzsrc-for:06
    9 anzsrc-for:0601
    10 schema:author N39bf657fcbe84e3f9e4fc8b93e47f68a
    11 schema:citation sg:pub.10.1007/bf02890255
    12 sg:pub.10.1007/s00028-013-0188-0
    13 sg:pub.10.1007/s00285-010-0330-3
    14 sg:pub.10.1023/a:1003457709690
    15 sg:pub.10.1038/nature05574
    16 sg:pub.10.1038/nature05663
    17 sg:pub.10.1038/nature11393
    18 schema:datePublished 2016-04-16
    19 schema:datePublishedReg 2016-04-16
    20 schema:description We consider a model with age and space structure for the epidermis evolution. The model, previously presented and analyzed with respect to the suprabasal epidermis, includes different types of cells (proliferating cells, differentiated cells, corneous cells, and apoptotic cells) moving with the same velocity, under the constraint that the local volume fraction occupied by the cells is constant in space and time. Here, we complete the model proposing a mechanism regulating the cell production in the basal layer and we focus on the stationary case of the problem, i.e. on the case corresponding to the normal status of the skin. A numerical scheme to compute the solution of the model is proposed and its convergence is studied. Simulations are provided for realistic values of the parameters, showing the possibility of reproducing the structure of both “thin” and “thick” epidermis.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N963aa32d3a444803974b372910101f0c
    25 Nb5c0cc25e498463aaeb2e23a57ad2d91
    26 sg:journal.1081642
    27 schema:keywords age
    28 basal layer
    29 cases
    30 cell production
    31 cells
    32 constraints
    33 convergence
    34 different types
    35 epidermis
    36 epidermis evolution
    37 evolution
    38 fraction
    39 layer
    40 local volume fraction
    41 mathematical modeling
    42 mechanism
    43 model
    44 modeling
    45 normal status
    46 numerical scheme
    47 numerical simulations
    48 parameters
    49 possibility
    50 problem
    51 production
    52 realistic values
    53 respect
    54 same velocity
    55 scheme
    56 simulations
    57 skin
    58 solution
    59 space
    60 space structure
    61 state
    62 stationary case
    63 status
    64 steady state
    65 structure
    66 suprabasal epidermis
    67 time
    68 types
    69 values
    70 velocity
    71 volume fraction
    72 schema:name The steady state of epidermis: mathematical modeling and numerical simulations
    73 schema:pagination 1595-1626
    74 schema:productId N3f8431731cd94f1d8552920baa2dc52c
    75 N9a9eba71fed644989a01ca4d8cfbb5e9
    76 Ne39469faec2341d28597669480469bd1
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049693884
    78 https://doi.org/10.1007/s00285-016-1006-4
    79 schema:sdDatePublished 2022-01-01T18:40
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N36dd3acd43494db295ec52e39131dbea
    82 schema:url https://doi.org/10.1007/s00285-016-1006-4
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N11a1c9c730c94db7a7d22b8574940e27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Epidermis
    88 rdf:type schema:DefinedTerm
    89 N13fb471c096b41f1964327ec3f874d37 rdf:first sg:person.016167643555.25
    90 rdf:rest rdf:nil
    91 N36dd3acd43494db295ec52e39131dbea schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N39bf657fcbe84e3f9e4fc8b93e47f68a rdf:first sg:person.0623363352.52
    94 rdf:rest N58e104574831450ba0eb96574b6ffedd
    95 N3f8431731cd94f1d8552920baa2dc52c schema:name pubmed_id
    96 schema:value 27085354
    97 rdf:type schema:PropertyValue
    98 N4ac1eec2275d449f8c6fb6fd94a52eb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Models, Biological
    100 rdf:type schema:DefinedTerm
    101 N5873289b84f548d7bd6bdf407b857e5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Cell Proliferation
    103 rdf:type schema:DefinedTerm
    104 N58e104574831450ba0eb96574b6ffedd rdf:first sg:person.0674740605.03
    105 rdf:rest N13fb471c096b41f1964327ec3f874d37
    106 N963aa32d3a444803974b372910101f0c schema:issueNumber 6-7
    107 rdf:type schema:PublicationIssue
    108 N9a9eba71fed644989a01ca4d8cfbb5e9 schema:name dimensions_id
    109 schema:value pub.1049693884
    110 rdf:type schema:PropertyValue
    111 Nb5c0cc25e498463aaeb2e23a57ad2d91 schema:volumeNumber 73
    112 rdf:type schema:PublicationVolume
    113 Nc669136217f846df8b78e097724fd0bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Cell Differentiation
    115 rdf:type schema:DefinedTerm
    116 Ne39469faec2341d28597669480469bd1 schema:name doi
    117 schema:value 10.1007/s00285-016-1006-4
    118 rdf:type schema:PropertyValue
    119 Ne7118ad99dd843c1ae26c5b6e404b9f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Computer Simulation
    121 rdf:type schema:DefinedTerm
    122 Ne7f60bf63a05428c8d2c9093f3220459 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Epidermal Cells
    124 rdf:type schema:DefinedTerm
    125 Nf1c23b414bbe4ec095abf647a8b945c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Humans
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Biological Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Biochemistry and Cell Biology
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1081642 schema:issn 0303-6812
    135 1432-1416
    136 schema:name Journal of Mathematical Biology
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.016167643555.25 schema:affiliation grid-institutes:grid.418333.e
    140 schema:familyName Marinoschi
    141 schema:givenName Gabriela
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167643555.25
    143 rdf:type schema:Person
    144 sg:person.0623363352.52 schema:affiliation grid-institutes:grid.419461.f
    145 schema:familyName Gandolfi
    146 schema:givenName Alberto
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52
    148 rdf:type schema:Person
    149 sg:person.0674740605.03 schema:affiliation grid-institutes:grid.11696.39
    150 schema:familyName Iannelli
    151 schema:givenName Mimmo
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674740605.03
    153 rdf:type schema:Person
    154 sg:pub.10.1007/bf02890255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006338646
    155 https://doi.org/10.1007/bf02890255
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00028-013-0188-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042143275
    158 https://doi.org/10.1007/s00028-013-0188-0
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00285-010-0330-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005239728
    161 https://doi.org/10.1007/s00285-010-0330-3
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1023/a:1003457709690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021329635
    164 https://doi.org/10.1023/a:1003457709690
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nature05574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042009462
    167 https://doi.org/10.1038/nature05574
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nature05663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034746284
    170 https://doi.org/10.1038/nature05663
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature11393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053417123
    173 https://doi.org/10.1038/nature11393
    174 rdf:type schema:CreativeWork
    175 grid-institutes:grid.11696.39 schema:alternateName Department of Mathematics, University of Trento, Via Sommarive 14, Povo, 38123, Trento, Italy
    176 schema:name Department of Mathematics, University of Trento, Via Sommarive 14, Povo, 38123, Trento, Italy
    177 rdf:type schema:Organization
    178 grid-institutes:grid.418333.e schema:alternateName Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie 13, 050711, Bucharest, Romania
    179 schema:name Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie 13, 050711, Bucharest, Romania
    180 rdf:type schema:Organization
    181 grid-institutes:grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”-CNR, Via dei Taurini 19, 00185, Rome, Italy
    182 schema:name Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”-CNR, Via dei Taurini 19, 00185, Rome, Italy
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...