Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-10

AUTHORS

Nicolas Bacaër

ABSTRACT

The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable. More... »

PAGES

847-866

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-016-0974-8

DOI

http://dx.doi.org/10.1007/s00285-016-0974-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008783574

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26897353


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Unit\u00e9 Mixte Internationnale de Mod\u00e9lisation Math\u00e9matique et Informatiques des Syst\u00e8mes Compl\u00e8xes", 
          "id": "https://www.grid.ac/institutes/grid.464114.2", 
          "name": [
            "IRD (Institut de Recherche pour le D\u00e9veloppement), UMMISCO, Bondy, France", 
            "Universit\u00e9 Pierre et Marie Curie, UMMISCO, Campus des Cordeliers, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baca\u00ebr", 
        "givenName": "Nicolas", 
        "id": "sg:person.01115677027.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115677027.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0021900200097576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000883783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00343192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003978632", 
          "https://doi.org/10.1007/bf00343192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-014-0828-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006432297", 
          "https://doi.org/10.1007/s00285-014-0828-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(81)90034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037682066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.268103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040436921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.268103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040436921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1981-0601750-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040885175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01318910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042077243", 
          "https://doi.org/10.1007/bf01318910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01318910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042077243", 
          "https://doi.org/10.1007/bf01318910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-012-0570-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043220994", 
          "https://doi.org/10.1007/s00285-012-0570-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.060103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044810932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.060103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044810932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(81)90044-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045714222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-013-0696-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048601238", 
          "https://doi.org/10.1007/s00285-013-0696-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20530-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049729859", 
          "https://doi.org/10.1007/978-3-642-20530-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20530-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049729859", 
          "https://doi.org/10.1007/978-3-642-20530-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qmath/12.1.283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059987097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/030602800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1936370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069660421"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00285-016-0974-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "Le mod\u00e8le stochastique SIS pour une \u00e9pid\u00e9mie dans un environnement al\u00e9atoire", 
    "pagination": "847-866", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "29d9268ba1e405bf3958c68a8d8bc147fdd32e151414496674d92f2ef10f1e24"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26897353"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-016-0974-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008783574"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-016-0974-8", 
      "https://app.dimensions.ai/details/publication/pub.1008783574"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00285-016-0974-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-016-0974-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-016-0974-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-016-0974-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-016-0974-8'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      52 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-016-0974-8 schema:about N26f8b54c34b645199e69e5fad2bc14c2
2 N37d3b44f8aa14de5b1348d5f2319f499
3 N39fd65540f2c4529847e037a51714e22
4 N3e6bf51c60e44df1a5ed7f91a221387d
5 N7396b945601449c3b07197e6f5341d92
6 Nad67a48f160d4902983512baa21b531f
7 Nfca3f118ed894ae8a2e4a5a697e8885b
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N26661ef887dc42f6abf18f9a196097d9
11 schema:citation sg:pub.10.1007/978-3-642-20530-9
12 sg:pub.10.1007/bf00343192
13 sg:pub.10.1007/bf01318910
14 sg:pub.10.1007/s00285-012-0570-5
15 sg:pub.10.1007/s00285-013-0696-0
16 sg:pub.10.1007/s00285-014-0828-1
17 https://doi.org/10.1016/0022-5193(81)90044-8
18 https://doi.org/10.1016/0040-5809(81)90034-4
19 https://doi.org/10.1017/s0021900200097576
20 https://doi.org/10.1086/285580
21 https://doi.org/10.1090/s0002-9939-1981-0601750-2
22 https://doi.org/10.1093/qmath/12.1.283
23 https://doi.org/10.1103/physreve.78.060103
24 https://doi.org/10.1103/physrevlett.101.268103
25 https://doi.org/10.1137/030602800
26 https://doi.org/10.2307/1936370
27 schema:datePublished 2016-10
28 schema:datePublishedReg 2016-10-01
29 schema:description The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N82dfceeb52c842d38771cd503814a7d4
34 Nf34d47c637a74efab69b5ff2783ac1af
35 sg:journal.1081642
36 schema:name Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire
37 schema:pagination 847-866
38 schema:productId N5e17938502ce40f7aff16ccabbe614e0
39 N9e2e77d05e2b4d5cad70d6d57d97b324
40 Nc58d9a12a5704a92a03cd85f0f7e234b
41 Ndff66bc51c5e458684845b55dd57b856
42 Nfbd9f3f8b6bf4748b0245045e8007b2b
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008783574
44 https://doi.org/10.1007/s00285-016-0974-8
45 schema:sdDatePublished 2019-04-10T17:31
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nebd0b9602a734e2fb528f58fa59c4020
48 schema:url http://link.springer.com/10.1007%2Fs00285-016-0974-8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N26661ef887dc42f6abf18f9a196097d9 rdf:first sg:person.01115677027.86
53 rdf:rest rdf:nil
54 N26f8b54c34b645199e69e5fad2bc14c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Markov Chains
56 rdf:type schema:DefinedTerm
57 N37d3b44f8aa14de5b1348d5f2319f499 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Population Density
59 rdf:type schema:DefinedTerm
60 N39fd65540f2c4529847e037a51714e22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Models, Biological
62 rdf:type schema:DefinedTerm
63 N3e6bf51c60e44df1a5ed7f91a221387d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Epidemics
65 rdf:type schema:DefinedTerm
66 N5e17938502ce40f7aff16ccabbe614e0 schema:name doi
67 schema:value 10.1007/s00285-016-0974-8
68 rdf:type schema:PropertyValue
69 N7396b945601449c3b07197e6f5341d92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N82dfceeb52c842d38771cd503814a7d4 schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 N9e2e77d05e2b4d5cad70d6d57d97b324 schema:name dimensions_id
75 schema:value pub.1008783574
76 rdf:type schema:PropertyValue
77 Nad67a48f160d4902983512baa21b531f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Environment
79 rdf:type schema:DefinedTerm
80 Nc58d9a12a5704a92a03cd85f0f7e234b schema:name nlm_unique_id
81 schema:value 7502105
82 rdf:type schema:PropertyValue
83 Ndff66bc51c5e458684845b55dd57b856 schema:name pubmed_id
84 schema:value 26897353
85 rdf:type schema:PropertyValue
86 Nebd0b9602a734e2fb528f58fa59c4020 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nf34d47c637a74efab69b5ff2783ac1af schema:volumeNumber 73
89 rdf:type schema:PublicationVolume
90 Nfbd9f3f8b6bf4748b0245045e8007b2b schema:name readcube_id
91 schema:value 29d9268ba1e405bf3958c68a8d8bc147fdd32e151414496674d92f2ef10f1e24
92 rdf:type schema:PropertyValue
93 Nfca3f118ed894ae8a2e4a5a697e8885b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Stochastic Processes
95 rdf:type schema:DefinedTerm
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
100 schema:name Statistics
101 rdf:type schema:DefinedTerm
102 sg:journal.1081642 schema:issn 0303-6812
103 1432-1416
104 schema:name Journal of Mathematical Biology
105 rdf:type schema:Periodical
106 sg:person.01115677027.86 schema:affiliation https://www.grid.ac/institutes/grid.464114.2
107 schema:familyName Bacaër
108 schema:givenName Nicolas
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115677027.86
110 rdf:type schema:Person
111 sg:pub.10.1007/978-3-642-20530-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049729859
112 https://doi.org/10.1007/978-3-642-20530-9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf00343192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003978632
115 https://doi.org/10.1007/bf00343192
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf01318910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042077243
118 https://doi.org/10.1007/bf01318910
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00285-012-0570-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043220994
121 https://doi.org/10.1007/s00285-012-0570-5
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00285-013-0696-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048601238
124 https://doi.org/10.1007/s00285-013-0696-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00285-014-0828-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006432297
127 https://doi.org/10.1007/s00285-014-0828-1
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0022-5193(81)90044-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045714222
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0040-5809(81)90034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037682066
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1017/s0021900200097576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000883783
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1086/285580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595703
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1090/s0002-9939-1981-0601750-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885175
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/qmath/12.1.283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059987097
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreve.78.060103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044810932
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.101.268103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040436921
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1137/030602800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842841
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2307/1936370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069660421
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.464114.2 schema:alternateName Unité Mixte Internationnale de Modélisation Mathématique et Informatiques des Systèmes Complèxes
150 schema:name IRD (Institut de Recherche pour le Développement), UMMISCO, Bondy, France
151 Université Pierre et Marie Curie, UMMISCO, Campus des Cordeliers, Paris, France
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...