Demographic stochasticity and evolution of dispersion I. Spatially homogeneous environments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-02

AUTHORS

Yen Ting Lin, Hyejin Kim, Charles R. Doering

ABSTRACT

The selection of dispersion is a classical problem in ecology and evolutionary biology. Deterministic dynamical models of two competing species differing only in their passive dispersal rates suggest that the lower mobility species has a competitive advantage in inhomogeneous environments, and that dispersion is a neutral characteristic in homogeneous environments. Here we consider models including local population fluctuations due to both individual movements and random birth and death events to investigate the effect of demographic stochasticity on the competition between species with different dispersal rates. In this paper, the first of two, we focus on homogeneous environments where deterministic models predict degenerate dynamics in the sense that there are many (marginally) stable equilibria with the species' coexistence ratio depending only on initial data. When demographic stochasticity is included the situation changes. A novel large carrying capacity ([Formula: see text]) asymptotic analysis, confirmed by direct numerical simulations, shows that a preference for faster dispersers emerges on a precisely defined [Formula: see text] time scale. We conclude that while there is no evolutionarily stable rate for competitors to choose in these models, the selection mechanism quantified here is the essential counterbalance in spatially inhomogeneous models including demographic fluctuations which do display an evolutionarily stable dispersal rate. More... »

PAGES

647-678

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-014-0776-9

DOI

http://dx.doi.org/10.1007/s00285-014-0776-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037398572

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24682331


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Extinction, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability Theory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Physics, University of Michigan, 48109-1020, Ann Arbor, MI, USA", 
            "Department of Biological Physics, Max Planck Institute for the Complex Systems, 01187, Dresden, Saxony, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yen Ting", 
        "id": "sg:person.01066703065.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066703065.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mathematics, Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyejin", 
        "id": "sg:person.01165734310.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165734310.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Physics, University of Michigan, 48109-1020, Ann Arbor, MI, USA", 
            "Department of Mathematics, University of Michigan, 48109-1043, Ann Arbor, MI, USA", 
            "Center for the Study of Complex Systems, University of Michigan, 48109-1107, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/269578a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003463025", 
          "https://doi.org/10.1038/269578a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-012-0548-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003639674", 
          "https://doi.org/10.1007/s00285-012-0548-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006554906681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010444050", 
          "https://doi.org/10.1023/a:1006554906681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.138104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011384023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.138104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011384023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tpb.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022256147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(83)90027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025791707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200026929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027273292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028851792", 
          "https://doi.org/10.1007/bf00275160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028851792", 
          "https://doi.org/10.1007/bf00275160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002850050120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043793649", 
          "https://doi.org/10.1007/s002850050120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0479-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045450516", 
          "https://doi.org/10.1007/s10955-012-0479-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.041907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.041907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/030602800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3211904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05389-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108493702", 
          "https://doi.org/10.1007/978-3-662-05389-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05389-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108493702", 
          "https://doi.org/10.1007/978-3-662-05389-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02", 
    "datePublishedReg": "2015-02-01", 
    "description": "The selection of dispersion is a classical problem in ecology and evolutionary biology. Deterministic dynamical models of two competing species differing only in their passive dispersal rates suggest that the lower mobility species has a competitive advantage in inhomogeneous environments, and that dispersion is a neutral characteristic in homogeneous environments. Here we consider models including local population fluctuations due to both individual movements and random birth and death events to investigate the effect of demographic stochasticity on the competition between species with different dispersal rates. In this paper, the first of two, we focus on homogeneous environments where deterministic models predict degenerate dynamics in the sense that there are many (marginally) stable equilibria with the species' coexistence ratio depending only on initial data. When demographic stochasticity is included the situation changes. A novel large carrying capacity ([Formula: see text]) asymptotic analysis, confirmed by direct numerical simulations, shows that a preference for faster dispersers emerges on a precisely defined [Formula: see text] time scale. We conclude that while there is no evolutionarily stable rate for competitors to choose in these models, the selection mechanism quantified here is the essential counterbalance in spatially inhomogeneous models including demographic fluctuations which do display an evolutionarily stable dispersal rate. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00285-014-0776-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3105079", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3001816", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "Demographic stochasticity and evolution of dispersion I. Spatially homogeneous environments", 
    "pagination": "647-678", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b2268d6ef1268e1681253ef39ba0e27f93d66154504bc0cbc5c806770fc056da"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24682331"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-014-0776-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037398572"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-014-0776-9", 
      "https://app.dimensions.ai/details/publication/pub.1037398572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00285-014-0776-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-014-0776-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-014-0776-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-014-0776-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-014-0776-9'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      56 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-014-0776-9 schema:about N2e0123e163a346779c28be32201798b6
2 N4905eb65b3d444fca5d30e53ee70b1a2
3 N596e6581f20d480b93d085c45dafbfb7
4 N650c4df6e0da43c78b487cbaa659ef48
5 N7141548551d7456d82e8f7f8c921aadb
6 N8b1416df056b4044916df4ca1b3b12bd
7 N8c0023fbfa8e4b938b5fbf431a1441b7
8 N8e583c823c8441b591234590cf139fda
9 Na084b2d04e6b4160a8cdcbb74ea753ad
10 Nae11ad36287f4677a19598d4457ea118
11 Ncee591d7d6fe44c49042855a88c8b068
12 Nf96608e482244440b38663473c6a9e6b
13 anzsrc-for:06
14 anzsrc-for:0602
15 schema:author N2b0950a7b27d436ca2485b07bf52570c
16 schema:citation sg:pub.10.1007/978-3-662-05389-8
17 sg:pub.10.1007/bf00275160
18 sg:pub.10.1007/s00285-012-0548-3
19 sg:pub.10.1007/s002850050120
20 sg:pub.10.1007/s10955-012-0479-9
21 sg:pub.10.1023/a:1006554906681
22 sg:pub.10.1038/269578a0
23 https://doi.org/10.1016/0040-5809(83)90027-8
24 https://doi.org/10.1016/j.tpb.2010.03.001
25 https://doi.org/10.1017/s0021900200026929
26 https://doi.org/10.1103/physreve.80.041907
27 https://doi.org/10.1103/physrevlett.109.138104
28 https://doi.org/10.1137/030602800
29 https://doi.org/10.2307/3211904
30 https://doi.org/10.2307/3212147
31 schema:datePublished 2015-02
32 schema:datePublishedReg 2015-02-01
33 schema:description The selection of dispersion is a classical problem in ecology and evolutionary biology. Deterministic dynamical models of two competing species differing only in their passive dispersal rates suggest that the lower mobility species has a competitive advantage in inhomogeneous environments, and that dispersion is a neutral characteristic in homogeneous environments. Here we consider models including local population fluctuations due to both individual movements and random birth and death events to investigate the effect of demographic stochasticity on the competition between species with different dispersal rates. In this paper, the first of two, we focus on homogeneous environments where deterministic models predict degenerate dynamics in the sense that there are many (marginally) stable equilibria with the species' coexistence ratio depending only on initial data. When demographic stochasticity is included the situation changes. A novel large carrying capacity ([Formula: see text]) asymptotic analysis, confirmed by direct numerical simulations, shows that a preference for faster dispersers emerges on a precisely defined [Formula: see text] time scale. We conclude that while there is no evolutionarily stable rate for competitors to choose in these models, the selection mechanism quantified here is the essential counterbalance in spatially inhomogeneous models including demographic fluctuations which do display an evolutionarily stable dispersal rate.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N0c0e30f0ce8e46fe992f67d723dad3c6
38 N34cb6d4880274745a2b88121d59baccd
39 sg:journal.1081642
40 schema:name Demographic stochasticity and evolution of dispersion I. Spatially homogeneous environments
41 schema:pagination 647-678
42 schema:productId N1084f27ef2244630bbeecfc0b1b75adc
43 N3c956a88e7f54ee9bd6800b8c05e19c1
44 N5c316fb8112740ba980bed6b8bf7a802
45 Nc090840788e641a0b8a0d3fab6ed02ea
46 Nd2d59f15f53e4114b712ee93f846610c
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037398572
48 https://doi.org/10.1007/s00285-014-0776-9
49 schema:sdDatePublished 2019-04-10T16:54
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nb18854d722a04dbb9624274801b7354f
52 schema:url http://link.springer.com/10.1007%2Fs00285-014-0776-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0c0e30f0ce8e46fe992f67d723dad3c6 schema:issueNumber 3
57 rdf:type schema:PublicationIssue
58 N1084f27ef2244630bbeecfc0b1b75adc schema:name pubmed_id
59 schema:value 24682331
60 rdf:type schema:PropertyValue
61 N2b0950a7b27d436ca2485b07bf52570c rdf:first sg:person.01066703065.48
62 rdf:rest Nf889a392c7854209a82becebb4c21aa0
63 N2e0123e163a346779c28be32201798b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Animals
65 rdf:type schema:DefinedTerm
66 N34cb6d4880274745a2b88121d59baccd schema:volumeNumber 70
67 rdf:type schema:PublicationVolume
68 N3c956a88e7f54ee9bd6800b8c05e19c1 schema:name readcube_id
69 schema:value b2268d6ef1268e1681253ef39ba0e27f93d66154504bc0cbc5c806770fc056da
70 rdf:type schema:PropertyValue
71 N4905eb65b3d444fca5d30e53ee70b1a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Ecosystem
73 rdf:type schema:DefinedTerm
74 N596e6581f20d480b93d085c45dafbfb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Systems Biology
76 rdf:type schema:DefinedTerm
77 N5c316fb8112740ba980bed6b8bf7a802 schema:name dimensions_id
78 schema:value pub.1037398572
79 rdf:type schema:PropertyValue
80 N650c4df6e0da43c78b487cbaa659ef48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Probability Theory
82 rdf:type schema:DefinedTerm
83 N7141548551d7456d82e8f7f8c921aadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Models, Biological
85 rdf:type schema:DefinedTerm
86 N8b1416df056b4044916df4ca1b3b12bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Mathematical Concepts
88 rdf:type schema:DefinedTerm
89 N8c0023fbfa8e4b938b5fbf431a1441b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Monte Carlo Method
91 rdf:type schema:DefinedTerm
92 N8e583c823c8441b591234590cf139fda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Stochastic Processes
94 rdf:type schema:DefinedTerm
95 Na084b2d04e6b4160a8cdcbb74ea753ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Computer Simulation
97 rdf:type schema:DefinedTerm
98 Nae11ad36287f4677a19598d4457ea118 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Population Dynamics
100 rdf:type schema:DefinedTerm
101 Nb18854d722a04dbb9624274801b7354f schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nc090840788e641a0b8a0d3fab6ed02ea schema:name doi
104 schema:value 10.1007/s00285-014-0776-9
105 rdf:type schema:PropertyValue
106 Ncee591d7d6fe44c49042855a88c8b068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Biological Evolution
108 rdf:type schema:DefinedTerm
109 Nd2d59f15f53e4114b712ee93f846610c schema:name nlm_unique_id
110 schema:value 7502105
111 rdf:type schema:PropertyValue
112 Nf54d3c26802e4b6ba4473afc3da2bec3 rdf:first sg:person.01161117310.79
113 rdf:rest rdf:nil
114 Nf889a392c7854209a82becebb4c21aa0 rdf:first sg:person.01165734310.92
115 rdf:rest Nf54d3c26802e4b6ba4473afc3da2bec3
116 Nf96608e482244440b38663473c6a9e6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Extinction, Biological
118 rdf:type schema:DefinedTerm
119 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
120 schema:name Biological Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
123 schema:name Ecology
124 rdf:type schema:DefinedTerm
125 sg:grant.3001816 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-014-0776-9
126 rdf:type schema:MonetaryGrant
127 sg:grant.3105079 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-014-0776-9
128 rdf:type schema:MonetaryGrant
129 sg:journal.1081642 schema:issn 0303-6812
130 1432-1416
131 schema:name Journal of Mathematical Biology
132 rdf:type schema:Periodical
133 sg:person.01066703065.48 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
134 schema:familyName Lin
135 schema:givenName Yen Ting
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066703065.48
137 rdf:type schema:Person
138 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
139 schema:familyName Doering
140 schema:givenName Charles R.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
142 rdf:type schema:Person
143 sg:person.01165734310.92 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
144 schema:familyName Kim
145 schema:givenName Hyejin
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165734310.92
147 rdf:type schema:Person
148 sg:pub.10.1007/978-3-662-05389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108493702
149 https://doi.org/10.1007/978-3-662-05389-8
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf00275160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028851792
152 https://doi.org/10.1007/bf00275160
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00285-012-0548-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003639674
155 https://doi.org/10.1007/s00285-012-0548-3
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s002850050120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043793649
158 https://doi.org/10.1007/s002850050120
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10955-012-0479-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045450516
161 https://doi.org/10.1007/s10955-012-0479-9
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/a:1006554906681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010444050
164 https://doi.org/10.1023/a:1006554906681
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/269578a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003463025
167 https://doi.org/10.1038/269578a0
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0040-5809(83)90027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025791707
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.tpb.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022256147
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1017/s0021900200026929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027273292
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreve.80.041907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739608
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.109.138104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011384023
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1137/030602800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842841
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2307/3211904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226144
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2307/3212147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226373
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
186 schema:name Department of Mathematics, Michigan State University, 48824, East Lansing, MI, USA
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
189 schema:name Center for the Study of Complex Systems, University of Michigan, 48109-1107, Ann Arbor, MI, USA
190 Department of Biological Physics, Max Planck Institute for the Complex Systems, 01187, Dresden, Saxony, Germany
191 Department of Mathematics, University of Michigan, 48109-1043, Ann Arbor, MI, USA
192 Department of Physics, University of Michigan, 48109-1020, Ann Arbor, MI, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...