Demographic stochasticity and evolution of dispersion II: Spatially inhomogeneous environments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-02

AUTHORS

Yen Ting Lin, Hyejin Kim, Charles R. Doering

ABSTRACT

Demographic stochasticity, the random fluctuations arising from the intrinsic discreteness of populations and the uncertainty of individual birth and death events, is an essential feature of population dynamics. Nevertheless theoretical investigations often neglect this naturally occurring noise due to the mathematical complexity of stochastic models. This paper reports the results of analytical and computational investigations of models of competitive population dynamics, specifically the competition between species in heterogeneous environments with different phenotypes of dispersal, fully accounting for demographic stochasticity. A novel asymptotic approximation is introduced and applied to derive remarkably simple analytical forms for key statistical quantities describing the populations' dynamical evolution. These formulas characterize the selection processes that determine which (if either) competitor has an evolutionary advantage. The theory is verified by large-scale numerical simulations. We discover that the fluctuations can (1) break dynamical degeneracies, (2) support polymorphism that does not exist in deterministic models, (3) reverse the direction of the weak selection and cause shifts in selection regimes, and (4) allow for the emergence of evolutionarily stable dispersal rates. Dynamical mechanisms and time scales of the fluctuation-induced phenomena are identified within the theoretical approach. More... »

PAGES

679-707

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-014-0756-0

DOI

http://dx.doi.org/10.1007/s00285-014-0756-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038539273

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24671427


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Department of Physics, University of Michigan, 48109-1120, Ann Arbor, MI, USA", 
            "Max Planck Institute for the Physics of Complex Systems, N\u00f6thnitzer Stra\u00dfe 38, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yen Ting", 
        "id": "sg:person.01066703065.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066703065.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mathematics, Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyejin", 
        "id": "sg:person.01165734310.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165734310.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics, University of Michigan, 48109-1043, Ann Arbor, MI, USA", 
            "Department of Mathematics, Center for the Study of Complex Systems, University of Michigan, 48109-1107, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0040-5809(85)90027-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000202458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/269578a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003463025", 
          "https://doi.org/10.1038/269578a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/19/6/065145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003607842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2000.1373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005315621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(91)90041-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021711329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tpb.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022256147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(80)90099-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024015571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1998.0258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025230389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-5809(83)90027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025791707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1420-9101.2003.00478.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036819567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-014-0776-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037398572", 
          "https://doi.org/10.1007/s00285-014-0776-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002850050120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043793649", 
          "https://doi.org/10.1007/s002850050120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0479-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045450516", 
          "https://doi.org/10.1007/s10955-012-0479-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01601953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047732557", 
          "https://doi.org/10.1007/bf01601953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01601953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047732557", 
          "https://doi.org/10.1007/bf01601953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17513750701450227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048649426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058596072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/423827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058713326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.041907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.041907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.156.3774.477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062491116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/030602800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1934583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069658776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3211904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02377-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109712104", 
          "https://doi.org/10.1007/978-3-662-02377-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02377-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109712104", 
          "https://doi.org/10.1007/978-3-662-02377-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02", 
    "datePublishedReg": "2015-02-01", 
    "description": "Demographic stochasticity, the random fluctuations arising from the intrinsic discreteness of populations and the uncertainty of individual birth and death events, is an essential feature of population dynamics. Nevertheless theoretical investigations often neglect this naturally occurring noise due to the mathematical complexity of stochastic models. This paper reports the results of analytical and computational investigations of models of competitive population dynamics, specifically the competition between species in heterogeneous environments with different phenotypes of dispersal, fully accounting for demographic stochasticity. A novel asymptotic approximation is introduced and applied to derive remarkably simple analytical forms for key statistical quantities describing the populations' dynamical evolution. These formulas characterize the selection processes that determine which (if either) competitor has an evolutionary advantage. The theory is verified by large-scale numerical simulations. We discover that the fluctuations can (1) break dynamical degeneracies, (2) support polymorphism that does not exist in deterministic models, (3) reverse the direction of the weak selection and cause shifts in selection regimes, and (4) allow for the emergence of evolutionarily stable dispersal rates. Dynamical mechanisms and time scales of the fluctuation-induced phenomena are identified within the theoretical approach. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00285-014-0756-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3105079", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3001816", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "Demographic stochasticity and evolution of dispersion II: Spatially inhomogeneous environments", 
    "pagination": "679-707", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b795dadf10bfa4d822147da7dd56306c9b48d661c1f3e7729d7d21c02d41e71b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24671427"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-014-0756-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038539273"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-014-0756-0", 
      "https://app.dimensions.ai/details/publication/pub.1038539273"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00285-014-0756-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-014-0756-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-014-0756-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-014-0756-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-014-0756-0'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      64 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-014-0756-0 schema:about N1679f149327c48359f3c1aee667e0c50
2 N2fc1125e52bd44028b199092423f047c
3 N39109a8ff3a044b98544fdb0ce763585
4 N3f70db069fa44f1f8148843f3d4f6763
5 N6c6a42eb5f1b4c4686b1e5319e28e297
6 N8495146f183c4f418b59ea7c2732f3f4
7 Nc60f1403727c461e9aba4d03cca62ca4
8 Ndce397cfe85e4a60a5dda95820a8eadb
9 Nfc23dbfec59b43b69569d26c5d56dc76
10 Nfe6c412670ee4e1b91d91c989edf6cb9
11 anzsrc-for:01
12 anzsrc-for:0104
13 schema:author N2e8c43c7b1934adeb4a918a15bb232e1
14 schema:citation sg:pub.10.1007/978-3-662-02377-8
15 sg:pub.10.1007/bf01601953
16 sg:pub.10.1007/s00285-014-0776-9
17 sg:pub.10.1007/s002850050120
18 sg:pub.10.1007/s10955-012-0479-9
19 sg:pub.10.1038/269578a0
20 https://doi.org/10.1016/0022-5193(80)90099-5
21 https://doi.org/10.1016/0040-5809(83)90027-8
22 https://doi.org/10.1016/0040-5809(85)90027-9
23 https://doi.org/10.1016/0040-5809(91)90041-d
24 https://doi.org/10.1016/j.tpb.2010.03.001
25 https://doi.org/10.1046/j.1420-9101.2003.00478.x
26 https://doi.org/10.1080/17513750701450227
27 https://doi.org/10.1086/285453
28 https://doi.org/10.1086/285949
29 https://doi.org/10.1086/378213
30 https://doi.org/10.1086/423827
31 https://doi.org/10.1088/0953-8984/19/6/065145
32 https://doi.org/10.1098/rspb.1998.0258
33 https://doi.org/10.1098/rspb.2000.1373
34 https://doi.org/10.1103/physreve.80.041907
35 https://doi.org/10.1126/science.156.3774.477
36 https://doi.org/10.1137/030602800
37 https://doi.org/10.2307/1934583
38 https://doi.org/10.2307/3211904
39 schema:datePublished 2015-02
40 schema:datePublishedReg 2015-02-01
41 schema:description Demographic stochasticity, the random fluctuations arising from the intrinsic discreteness of populations and the uncertainty of individual birth and death events, is an essential feature of population dynamics. Nevertheless theoretical investigations often neglect this naturally occurring noise due to the mathematical complexity of stochastic models. This paper reports the results of analytical and computational investigations of models of competitive population dynamics, specifically the competition between species in heterogeneous environments with different phenotypes of dispersal, fully accounting for demographic stochasticity. A novel asymptotic approximation is introduced and applied to derive remarkably simple analytical forms for key statistical quantities describing the populations' dynamical evolution. These formulas characterize the selection processes that determine which (if either) competitor has an evolutionary advantage. The theory is verified by large-scale numerical simulations. We discover that the fluctuations can (1) break dynamical degeneracies, (2) support polymorphism that does not exist in deterministic models, (3) reverse the direction of the weak selection and cause shifts in selection regimes, and (4) allow for the emergence of evolutionarily stable dispersal rates. Dynamical mechanisms and time scales of the fluctuation-induced phenomena are identified within the theoretical approach.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N1a3af75b58f64aafa47ae3ea374de6bc
46 N60f356b16be64117910751d6fa15ffc3
47 sg:journal.1081642
48 schema:name Demographic stochasticity and evolution of dispersion II: Spatially inhomogeneous environments
49 schema:pagination 679-707
50 schema:productId N692357758b9a41c6ae697c2fd56853e5
51 N6d3d8f85573b4c739daa92c7202ede1b
52 N918122e517854e4787e0579e32328924
53 N9f5ea392682b4d9f97b3d8f8bb25f447
54 Ncddf5dd6f3d3447fa3ede09a79ed234c
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038539273
56 https://doi.org/10.1007/s00285-014-0756-0
57 schema:sdDatePublished 2019-04-11T01:20
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N567710a550e943aebcdc2aa9d10fade4
60 schema:url http://link.springer.com/10.1007%2Fs00285-014-0756-0
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N1679f149327c48359f3c1aee667e0c50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Computer Simulation
66 rdf:type schema:DefinedTerm
67 N1a3af75b58f64aafa47ae3ea374de6bc schema:volumeNumber 70
68 rdf:type schema:PublicationVolume
69 N2e8c43c7b1934adeb4a918a15bb232e1 rdf:first sg:person.01066703065.48
70 rdf:rest N4d9ba2e4b633482e9944d5906698d3ab
71 N2fc1125e52bd44028b199092423f047c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Mathematical Concepts
73 rdf:type schema:DefinedTerm
74 N39109a8ff3a044b98544fdb0ce763585 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Animals
76 rdf:type schema:DefinedTerm
77 N3f70db069fa44f1f8148843f3d4f6763 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Population Dynamics
79 rdf:type schema:DefinedTerm
80 N4d9ba2e4b633482e9944d5906698d3ab rdf:first sg:person.01165734310.92
81 rdf:rest Nd0dc64a397ff4140b88ee73d2fc92a3c
82 N567710a550e943aebcdc2aa9d10fade4 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N60f356b16be64117910751d6fa15ffc3 schema:issueNumber 3
85 rdf:type schema:PublicationIssue
86 N692357758b9a41c6ae697c2fd56853e5 schema:name pubmed_id
87 schema:value 24671427
88 rdf:type schema:PropertyValue
89 N6c6a42eb5f1b4c4686b1e5319e28e297 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Monte Carlo Method
91 rdf:type schema:DefinedTerm
92 N6d3d8f85573b4c739daa92c7202ede1b schema:name readcube_id
93 schema:value b795dadf10bfa4d822147da7dd56306c9b48d661c1f3e7729d7d21c02d41e71b
94 rdf:type schema:PropertyValue
95 N8495146f183c4f418b59ea7c2732f3f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Biological Evolution
97 rdf:type schema:DefinedTerm
98 N918122e517854e4787e0579e32328924 schema:name doi
99 schema:value 10.1007/s00285-014-0756-0
100 rdf:type schema:PropertyValue
101 N9f5ea392682b4d9f97b3d8f8bb25f447 schema:name nlm_unique_id
102 schema:value 7502105
103 rdf:type schema:PropertyValue
104 Nc60f1403727c461e9aba4d03cca62ca4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Biological
106 rdf:type schema:DefinedTerm
107 Ncddf5dd6f3d3447fa3ede09a79ed234c schema:name dimensions_id
108 schema:value pub.1038539273
109 rdf:type schema:PropertyValue
110 Nd0dc64a397ff4140b88ee73d2fc92a3c rdf:first sg:person.01161117310.79
111 rdf:rest rdf:nil
112 Ndce397cfe85e4a60a5dda95820a8eadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Stochastic Processes
114 rdf:type schema:DefinedTerm
115 Nfc23dbfec59b43b69569d26c5d56dc76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Systems Biology
117 rdf:type schema:DefinedTerm
118 Nfe6c412670ee4e1b91d91c989edf6cb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Ecosystem
120 rdf:type schema:DefinedTerm
121 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
122 schema:name Mathematical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
125 schema:name Statistics
126 rdf:type schema:DefinedTerm
127 sg:grant.3001816 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-014-0756-0
128 rdf:type schema:MonetaryGrant
129 sg:grant.3105079 http://pending.schema.org/fundedItem sg:pub.10.1007/s00285-014-0756-0
130 rdf:type schema:MonetaryGrant
131 sg:journal.1081642 schema:issn 0303-6812
132 1432-1416
133 schema:name Journal of Mathematical Biology
134 rdf:type schema:Periodical
135 sg:person.01066703065.48 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
136 schema:familyName Lin
137 schema:givenName Yen Ting
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066703065.48
139 rdf:type schema:Person
140 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
141 schema:familyName Doering
142 schema:givenName Charles R.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
144 rdf:type schema:Person
145 sg:person.01165734310.92 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
146 schema:familyName Kim
147 schema:givenName Hyejin
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165734310.92
149 rdf:type schema:Person
150 sg:pub.10.1007/978-3-662-02377-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109712104
151 https://doi.org/10.1007/978-3-662-02377-8
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf01601953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047732557
154 https://doi.org/10.1007/bf01601953
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00285-014-0776-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037398572
157 https://doi.org/10.1007/s00285-014-0776-9
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s002850050120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043793649
160 https://doi.org/10.1007/s002850050120
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s10955-012-0479-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045450516
163 https://doi.org/10.1007/s10955-012-0479-9
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/269578a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003463025
166 https://doi.org/10.1038/269578a0
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0022-5193(80)90099-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024015571
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0040-5809(83)90027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025791707
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0040-5809(85)90027-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000202458
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0040-5809(91)90041-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1021711329
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.tpb.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022256147
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1046/j.1420-9101.2003.00478.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036819567
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/17513750701450227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048649426
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1086/285453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595576
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1086/285949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058596072
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1086/378213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058671265
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1086/423827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058713326
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1088/0953-8984/19/6/065145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003607842
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1098/rspb.1998.0258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025230389
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1098/rspb.2000.1373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005315621
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physreve.80.041907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739608
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.156.3774.477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062491116
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1137/030602800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842841
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2307/1934583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069658776
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2307/3211904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226144
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
207 schema:name Department of Mathematics, Michigan State University, 48824, East Lansing, MI, USA
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
210 schema:name Department of Mathematics, Center for the Study of Complex Systems, University of Michigan, 48109-1107, Ann Arbor, MI, USA
211 Department of Mathematics, University of Michigan, 48109-1043, Ann Arbor, MI, USA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
214 schema:name Department of Physics, University of Michigan, 48109-1120, Ann Arbor, MI, USA
215 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187, Dresden, Germany
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...