Optimal solution for a cancer radiotherapy problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02-08

AUTHORS

A. Bertuzzi, C. Bruni, F. Papa, C. Sinisgalli

ABSTRACT

We address the problem of finding the optimal radiotherapy fractionation scheme, representing the response to radiation of tumour and normal tissues by the LQ model including exponential repopulation and sublethal damage due to incomplete repair. We formulate the nonlinear programming problem of maximizing the overall tumour damage, while keeping the damages to the late and early responding normal tissues within a given admissible level. The optimum is searched over a single week of treatment and its possible structures are identified. In the two simpler but important cases of absence of the incomplete repair term or of prevalent late constraint, we prove the uniqueness of the optimal solution and we characterize it in terms of model parameters. The optimal solution is found to be not necessarily uniform over the week. The theoretical results are confirmed by numerical tests and comparisons with literature fractionation schemes are presented. More... »

PAGES

311-349

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-012-0512-2

DOI

http://dx.doi.org/10.1007/s00285-012-0512-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051833071

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22314975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose Fractionation, Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose-Response Relationship, Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Tolerance", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertuzzi", 
        "givenName": "A.", 
        "id": "sg:person.01321457652.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Sistemistica \u201cA. Ruberti\u201d, Sapienza Universit\u00e0 di Roma, Via Ariosto 25, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Informatica e Sistemistica \u201cA. Ruberti\u201d, Sapienza Universit\u00e0 di Roma, Via Ariosto 25, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruni", 
        "givenName": "C.", 
        "id": "sg:person.016246316767.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016246316767.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Sistemistica \u201cA. Ruberti\u201d, Sapienza Universit\u00e0 di Roma, Via Ariosto 25, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Informatica e Sistemistica \u201cA. Ruberti\u201d, Sapienza Universit\u00e0 di Roma, Via Ariosto 25, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papa", 
        "givenName": "F.", 
        "id": "sg:person.01036254641.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036254641.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, CNR, Viale Manzoni 30, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinisgalli", 
        "givenName": "C.", 
        "id": "sg:person.01261114530.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261114530.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1742-4682-3-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049887481", 
          "https://doi.org/10.1186/1742-4682-3-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-008-0222-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006554774", 
          "https://doi.org/10.1007/s00285-008-0222-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-009-9482-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009124792", 
          "https://doi.org/10.1007/s11538-009-9482-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-007-9287-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046113038", 
          "https://doi.org/10.1007/s11538-007-9287-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02-08", 
    "datePublishedReg": "2012-02-08", 
    "description": "We address the problem of finding the optimal radiotherapy fractionation scheme, representing the response to radiation of tumour and normal tissues by the LQ model including exponential repopulation and sublethal damage due to incomplete repair. We formulate the nonlinear programming problem of maximizing the overall tumour damage, while keeping the damages to the late and early responding normal tissues within a given admissible level. The optimum is searched over a single week of treatment and its possible structures are identified. In the two simpler but important cases of absence of the incomplete repair term or of prevalent late constraint, we prove the uniqueness of the optimal solution and we characterize it in terms of model parameters. The optimal solution is found to be not necessarily uniform over the week. The theoretical results are confirmed by numerical tests and comparisons with literature fractionation schemes are presented.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00285-012-0512-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "keywords": [
      "optimal solution", 
      "nonlinear programming problem", 
      "radiation of tumours", 
      "programming problem", 
      "theoretical results", 
      "numerical tests", 
      "radiotherapy problem", 
      "radiotherapy fractionation schemes", 
      "important case", 
      "model parameters", 
      "latest constraints", 
      "LQ model", 
      "admissible level", 
      "problem", 
      "scheme", 
      "solution", 
      "possible structures", 
      "uniqueness", 
      "terms", 
      "constraints", 
      "optimum", 
      "incomplete repair", 
      "parameters", 
      "model", 
      "fractionation scheme", 
      "radiation", 
      "structure", 
      "cases", 
      "results", 
      "comparison", 
      "test", 
      "single week", 
      "response", 
      "levels", 
      "absence", 
      "damage", 
      "repopulation", 
      "normal tissues", 
      "sublethal damage", 
      "treatment", 
      "tissue", 
      "repair", 
      "tumor damage", 
      "weeks", 
      "tumors", 
      "optimal radiotherapy fractionation scheme", 
      "exponential repopulation", 
      "overall tumour damage", 
      "incomplete repair term", 
      "repair term", 
      "prevalent late constraint", 
      "literature fractionation schemes", 
      "cancer radiotherapy problem"
    ], 
    "name": "Optimal solution for a cancer radiotherapy problem", 
    "pagination": "311-349", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051833071"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-012-0512-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22314975"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-012-0512-2", 
      "https://app.dimensions.ai/details/publication/pub.1051833071"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_575.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00285-012-0512-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-012-0512-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-012-0512-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-012-0512-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-012-0512-2'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      22 PREDICATES      93 URIs      81 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-012-0512-2 schema:about N00fd9192b8614fa5be6648a14c43c3dd
2 N29369aa170334a7abeb16a58f8a63816
3 N307053e661d94b02a5e91d0018f43256
4 N4c8621f1805c4a8cb25dcf023e786b3a
5 N4e5720b7ad6a4507b89465f24e043ba1
6 N91a011df846a4988879c8e0dd8c8d5e1
7 Nc3f060fae5564459910bde1a4dc17bc5
8 Nd3a737ee7c814f80aa19055e8ab23d06
9 Nf0087b613c5f4c17b4734daeb61b9054
10 Nf10a9cd0f5e341d48348155fed7fbca8
11 anzsrc-for:01
12 anzsrc-for:06
13 schema:author Nf519adfe92e04ff7b733c9c8154d5050
14 schema:citation sg:pub.10.1007/s00285-008-0222-y
15 sg:pub.10.1007/s11538-007-9287-9
16 sg:pub.10.1007/s11538-009-9482-y
17 sg:pub.10.1186/1742-4682-3-7
18 schema:datePublished 2012-02-08
19 schema:datePublishedReg 2012-02-08
20 schema:description We address the problem of finding the optimal radiotherapy fractionation scheme, representing the response to radiation of tumour and normal tissues by the LQ model including exponential repopulation and sublethal damage due to incomplete repair. We formulate the nonlinear programming problem of maximizing the overall tumour damage, while keeping the damages to the late and early responding normal tissues within a given admissible level. The optimum is searched over a single week of treatment and its possible structures are identified. In the two simpler but important cases of absence of the incomplete repair term or of prevalent late constraint, we prove the uniqueness of the optimal solution and we characterize it in terms of model parameters. The optimal solution is found to be not necessarily uniform over the week. The theoretical results are confirmed by numerical tests and comparisons with literature fractionation schemes are presented.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N06e833610569443eba071a1a10ed1373
25 N4f5f71b8e14e481e99f688cd9b348a86
26 sg:journal.1081642
27 schema:keywords LQ model
28 absence
29 admissible level
30 cancer radiotherapy problem
31 cases
32 comparison
33 constraints
34 damage
35 exponential repopulation
36 fractionation scheme
37 important case
38 incomplete repair
39 incomplete repair term
40 latest constraints
41 levels
42 literature fractionation schemes
43 model
44 model parameters
45 nonlinear programming problem
46 normal tissues
47 numerical tests
48 optimal radiotherapy fractionation scheme
49 optimal solution
50 optimum
51 overall tumour damage
52 parameters
53 possible structures
54 prevalent late constraint
55 problem
56 programming problem
57 radiation
58 radiation of tumours
59 radiotherapy fractionation schemes
60 radiotherapy problem
61 repair
62 repair term
63 repopulation
64 response
65 results
66 scheme
67 single week
68 solution
69 structure
70 sublethal damage
71 terms
72 test
73 theoretical results
74 tissue
75 treatment
76 tumor damage
77 tumors
78 uniqueness
79 weeks
80 schema:name Optimal solution for a cancer radiotherapy problem
81 schema:pagination 311-349
82 schema:productId N1f8f2ac6e0544ab09923eced80e54a8d
83 Nb7c096dab03f4eb78fa9772918d14960
84 Nbf13c4d51c8e4fe3aaafb75e5b2e6e51
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051833071
86 https://doi.org/10.1007/s00285-012-0512-2
87 schema:sdDatePublished 2021-11-01T18:18
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nc3b700ccd2354f51b4d760e989e9eeca
90 schema:url https://doi.org/10.1007/s00285-012-0512-2
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N00fd9192b8614fa5be6648a14c43c3dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Dose-Response Relationship, Radiation
96 rdf:type schema:DefinedTerm
97 N06e833610569443eba071a1a10ed1373 schema:volumeNumber 66
98 rdf:type schema:PublicationVolume
99 N1f8f2ac6e0544ab09923eced80e54a8d schema:name doi
100 schema:value 10.1007/s00285-012-0512-2
101 rdf:type schema:PropertyValue
102 N279dd071a2724a2585c301d09b462bb9 rdf:first sg:person.01261114530.39
103 rdf:rest rdf:nil
104 N29369aa170334a7abeb16a58f8a63816 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Dose Fractionation, Radiation
106 rdf:type schema:DefinedTerm
107 N307053e661d94b02a5e91d0018f43256 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Linear Models
109 rdf:type schema:DefinedTerm
110 N4c8621f1805c4a8cb25dcf023e786b3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Humans
112 rdf:type schema:DefinedTerm
113 N4e5720b7ad6a4507b89465f24e043ba1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Nonlinear Dynamics
115 rdf:type schema:DefinedTerm
116 N4f5f71b8e14e481e99f688cd9b348a86 schema:issueNumber 1-2
117 rdf:type schema:PublicationIssue
118 N91a011df846a4988879c8e0dd8c8d5e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Models, Biological
120 rdf:type schema:DefinedTerm
121 Nb7c096dab03f4eb78fa9772918d14960 schema:name dimensions_id
122 schema:value pub.1051833071
123 rdf:type schema:PropertyValue
124 Nbf13c4d51c8e4fe3aaafb75e5b2e6e51 schema:name pubmed_id
125 schema:value 22314975
126 rdf:type schema:PropertyValue
127 Nc3b700ccd2354f51b4d760e989e9eeca schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nc3f060fae5564459910bde1a4dc17bc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Cell Death
131 rdf:type schema:DefinedTerm
132 Nd0e8e32886604f808a09082a7be6e8b5 rdf:first sg:person.01036254641.72
133 rdf:rest N279dd071a2724a2585c301d09b462bb9
134 Nd3a737ee7c814f80aa19055e8ab23d06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Mathematical Concepts
136 rdf:type schema:DefinedTerm
137 Ne2b64e24854440988b2978cf8002a317 rdf:first sg:person.016246316767.52
138 rdf:rest Nd0e8e32886604f808a09082a7be6e8b5
139 Nf0087b613c5f4c17b4734daeb61b9054 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Radiation Tolerance
141 rdf:type schema:DefinedTerm
142 Nf10a9cd0f5e341d48348155fed7fbca8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Neoplasms
144 rdf:type schema:DefinedTerm
145 Nf519adfe92e04ff7b733c9c8154d5050 rdf:first sg:person.01321457652.97
146 rdf:rest Ne2b64e24854440988b2978cf8002a317
147 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
148 schema:name Mathematical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
151 schema:name Biological Sciences
152 rdf:type schema:DefinedTerm
153 sg:journal.1081642 schema:issn 0303-6812
154 1432-1416
155 schema:name Journal of Mathematical Biology
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01036254641.72 schema:affiliation grid-institutes:grid.7841.a
159 schema:familyName Papa
160 schema:givenName F.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036254641.72
162 rdf:type schema:Person
163 sg:person.01261114530.39 schema:affiliation grid-institutes:grid.5326.2
164 schema:familyName Sinisgalli
165 schema:givenName C.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261114530.39
167 rdf:type schema:Person
168 sg:person.01321457652.97 schema:affiliation grid-institutes:grid.5326.2
169 schema:familyName Bertuzzi
170 schema:givenName A.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97
172 rdf:type schema:Person
173 sg:person.016246316767.52 schema:affiliation grid-institutes:grid.7841.a
174 schema:familyName Bruni
175 schema:givenName C.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016246316767.52
177 rdf:type schema:Person
178 sg:pub.10.1007/s00285-008-0222-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006554774
179 https://doi.org/10.1007/s00285-008-0222-y
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s11538-007-9287-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046113038
182 https://doi.org/10.1007/s11538-007-9287-9
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s11538-009-9482-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009124792
185 https://doi.org/10.1007/s11538-009-9482-y
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1742-4682-3-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049887481
188 https://doi.org/10.1186/1742-4682-3-7
189 rdf:type schema:CreativeWork
190 grid-institutes:grid.5326.2 schema:alternateName Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Viale Manzoni 30, 00185, Roma, Italy
191 schema:name Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Viale Manzoni 30, 00185, Roma, Italy
192 rdf:type schema:Organization
193 grid-institutes:grid.7841.a schema:alternateName Dipartimento di Informatica e Sistemistica “A. Ruberti”, Sapienza Università di Roma, Via Ariosto 25, 00185, Rome, Italy
194 schema:name Dipartimento di Informatica e Sistemistica “A. Ruberti”, Sapienza Università di Roma, Via Ariosto 25, 00185, Rome, Italy
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...