Linear quadratic and tumour control probability modelling in external beam radiotherapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-09-30

AUTHORS

S. F. C. O’Rourke, H. McAneney, T. Hillen

ABSTRACT

The standard linear-quadratic (LQ) survival model for external beam radiotherapy is reviewed with particular emphasis on studying how different schedules of radiation treatment planning may be affected by different tumour repopulation kinetics. The LQ model is further examined in the context of tumour control probability (TCP) models. The application of the Zaider and Minerbo non-Poissonian TCP model incorporating the effect of cellular repopulation is reviewed. In particular the recent development of a cell cycle model within the original Zaider and Minerbo TCP formalism is highlighted. Application of this TCP cell-cycle model in clinical treatment plans is explored and analysed. More... »

PAGES

799

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00285-008-0222-y

DOI

http://dx.doi.org/10.1007/s00285-008-0222-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006554774

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18825382


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Cycle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiobiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Planning, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen\u2019s University Belfast, BT9 7AB, Belfast, UK", 
          "id": "http://www.grid.ac/institutes/grid.4777.3", 
          "name": [
            "School of Mathematics and Physics, Queen\u2019s University Belfast, BT7 1NN, Belfast, UK", 
            "Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen\u2019s University Belfast, BT9 7AB, Belfast, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Rourke", 
        "givenName": "S. F. C.", 
        "id": "sg:person.013033747266.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033747266.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Physics, Queen\u2019s University Belfast, BT7 1NN, Belfast, UK", 
          "id": "http://www.grid.ac/institutes/grid.4777.3", 
          "name": [
            "School of Mathematics and Physics, Queen\u2019s University Belfast, BT7 1NN, Belfast, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McAneney", 
        "givenName": "H.", 
        "id": "sg:person.01023160475.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023160475.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical and Statistical Sciences, University of Alberta, T6G 2G1, Edmonton, AB, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Mathematical and Statistical Sciences, University of Alberta, T6G 2G1, Edmonton, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hillen", 
        "givenName": "T.", 
        "id": "sg:person.01355305206.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355305206.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1742-4682-3-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020322155", 
          "https://doi.org/10.1186/1742-4682-3-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1996.276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005092716", 
          "https://doi.org/10.1038/bjc.1996.276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46656-4_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027546399", 
          "https://doi.org/10.1007/978-3-642-46656-4_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81519-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052499825", 
          "https://doi.org/10.1007/978-3-642-81519-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026450668", 
          "https://doi.org/10.1038/nrc1650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-48681-4_71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047316982", 
          "https://doi.org/10.1007/978-3-642-48681-4_71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4682-3-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049887481", 
          "https://doi.org/10.1186/1742-4682-3-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09-30", 
    "datePublishedReg": "2008-09-30", 
    "description": "The standard linear-quadratic (LQ) survival model for external beam radiotherapy is reviewed with particular emphasis on studying how different schedules of radiation treatment planning may be affected by different tumour repopulation kinetics. The LQ model is further examined in the context of tumour control probability (TCP) models. The application of the Zaider and Minerbo non-Poissonian TCP model incorporating the effect of cellular repopulation is reviewed. In particular the recent development of a cell cycle model within the original Zaider and Minerbo TCP formalism is highlighted. Application of this TCP cell-cycle model in clinical treatment plans is explored and analysed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00285-008-0222-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4-5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "external beam radiotherapy", 
      "beam radiotherapy", 
      "linear-quadratic (LQ) survival model", 
      "clinical treatment plans", 
      "tumor control probability (TCP) model", 
      "radiation treatment planning", 
      "repopulation kinetics", 
      "treatment plan", 
      "different schedules", 
      "cellular repopulation", 
      "treatment planning", 
      "radiotherapy", 
      "survival models", 
      "LQ model", 
      "repopulation", 
      "schedule", 
      "TCP model", 
      "particular emphasis", 
      "effect", 
      "Zaider", 
      "development", 
      "model", 
      "plan", 
      "recent developments", 
      "emphasis", 
      "cell-cycle model", 
      "planning", 
      "cell cycle model", 
      "probability modelling", 
      "kinetics", 
      "probability model", 
      "context", 
      "applications", 
      "quadratic", 
      "cycle model", 
      "formalism", 
      "modelling", 
      "standard linear-quadratic (LQ) survival model", 
      "different tumour repopulation kinetics", 
      "tumour repopulation kinetics", 
      "control probability (TCP) models", 
      "Minerbo non-Poissonian TCP model", 
      "non-Poissonian TCP model", 
      "original Zaider", 
      "Minerbo TCP formalism", 
      "TCP formalism", 
      "TCP cell-cycle model", 
      "tumour control probability modelling", 
      "control probability modelling"
    ], 
    "name": "Linear quadratic and tumour control probability modelling in external beam radiotherapy", 
    "pagination": "799", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006554774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00285-008-0222-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18825382"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00285-008-0222-y", 
      "https://app.dimensions.ai/details/publication/pub.1006554774"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_469.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00285-008-0222-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00285-008-0222-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00285-008-0222-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00285-008-0222-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00285-008-0222-y'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      22 PREDICATES      92 URIs      77 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00285-008-0222-y schema:about N26804b0824624c2ea182a2c20193c51c
2 N3192a8b9b21e48c6bbb0c528bc3e65de
3 N7dd25515504649d8961d722a47eba58b
4 N86019feb8c364183a2565c81dd1632be
5 Na7222f63e54a4af4ad48530c9dabfe2f
6 Nb06d0b92c3d94e99aac454aa105faa40
7 Nbc0a1553324841339b225f08936ddffe
8 Nec81e731c26c457f8f097b2fe647f0b6
9 Necaf89efce3749eb91694d7872a40296
10 Nf661d832fde44db8af23ff04b5bad317
11 anzsrc-for:01
12 anzsrc-for:06
13 schema:author N2857669328ca40ba8be32ffbd6545231
14 schema:citation sg:pub.10.1007/978-3-642-46656-4_15
15 sg:pub.10.1007/978-3-642-48681-4_71
16 sg:pub.10.1007/978-3-642-81519-5
17 sg:pub.10.1038/bjc.1996.276
18 sg:pub.10.1038/nrc1650
19 sg:pub.10.1186/1742-4682-3-1
20 sg:pub.10.1186/1742-4682-3-7
21 schema:datePublished 2008-09-30
22 schema:datePublishedReg 2008-09-30
23 schema:description The standard linear-quadratic (LQ) survival model for external beam radiotherapy is reviewed with particular emphasis on studying how different schedules of radiation treatment planning may be affected by different tumour repopulation kinetics. The LQ model is further examined in the context of tumour control probability (TCP) models. The application of the Zaider and Minerbo non-Poissonian TCP model incorporating the effect of cellular repopulation is reviewed. In particular the recent development of a cell cycle model within the original Zaider and Minerbo TCP formalism is highlighted. Application of this TCP cell-cycle model in clinical treatment plans is explored and analysed.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf Nae955e0c7fc94d06a90f4018e021105a
28 Nbb31552b45c24a56ae1b002bd51887e8
29 sg:journal.1081642
30 schema:keywords LQ model
31 Minerbo TCP formalism
32 Minerbo non-Poissonian TCP model
33 TCP cell-cycle model
34 TCP formalism
35 TCP model
36 Zaider
37 applications
38 beam radiotherapy
39 cell cycle model
40 cell-cycle model
41 cellular repopulation
42 clinical treatment plans
43 context
44 control probability (TCP) models
45 control probability modelling
46 cycle model
47 development
48 different schedules
49 different tumour repopulation kinetics
50 effect
51 emphasis
52 external beam radiotherapy
53 formalism
54 kinetics
55 linear-quadratic (LQ) survival model
56 model
57 modelling
58 non-Poissonian TCP model
59 original Zaider
60 particular emphasis
61 plan
62 planning
63 probability model
64 probability modelling
65 quadratic
66 radiation treatment planning
67 radiotherapy
68 recent developments
69 repopulation
70 repopulation kinetics
71 schedule
72 standard linear-quadratic (LQ) survival model
73 survival models
74 treatment plan
75 treatment planning
76 tumor control probability (TCP) model
77 tumour control probability modelling
78 tumour repopulation kinetics
79 schema:name Linear quadratic and tumour control probability modelling in external beam radiotherapy
80 schema:pagination 799
81 schema:productId N272e5fa7c69545ae9661398fbd90ff1b
82 N478604f73b9949b694f487cb71361e5c
83 Na866e328b671414f826b45b17c805e00
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006554774
85 https://doi.org/10.1007/s00285-008-0222-y
86 schema:sdDatePublished 2021-12-01T19:21
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N3b3518594822443eb7fed5842bcee241
89 schema:url https://doi.org/10.1007/s00285-008-0222-y
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N235029eec7844654bc7d6b975835404f rdf:first sg:person.01355305206.37
94 rdf:rest rdf:nil
95 N26804b0824624c2ea182a2c20193c51c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Mathematical Concepts
97 rdf:type schema:DefinedTerm
98 N272e5fa7c69545ae9661398fbd90ff1b schema:name pubmed_id
99 schema:value 18825382
100 rdf:type schema:PropertyValue
101 N2857669328ca40ba8be32ffbd6545231 rdf:first sg:person.013033747266.15
102 rdf:rest Nc9c667fcaa4842aaa015bf92887dce74
103 N3192a8b9b21e48c6bbb0c528bc3e65de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Neoplasms
105 rdf:type schema:DefinedTerm
106 N3b3518594822443eb7fed5842bcee241 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N478604f73b9949b694f487cb71361e5c schema:name dimensions_id
109 schema:value pub.1006554774
110 rdf:type schema:PropertyValue
111 N7dd25515504649d8961d722a47eba58b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Radiobiology
113 rdf:type schema:DefinedTerm
114 N86019feb8c364183a2565c81dd1632be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Models, Biological
116 rdf:type schema:DefinedTerm
117 Na7222f63e54a4af4ad48530c9dabfe2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Radiotherapy Planning, Computer-Assisted
119 rdf:type schema:DefinedTerm
120 Na866e328b671414f826b45b17c805e00 schema:name doi
121 schema:value 10.1007/s00285-008-0222-y
122 rdf:type schema:PropertyValue
123 Nae955e0c7fc94d06a90f4018e021105a schema:volumeNumber 58
124 rdf:type schema:PublicationVolume
125 Nb06d0b92c3d94e99aac454aa105faa40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Models, Statistical
127 rdf:type schema:DefinedTerm
128 Nbb31552b45c24a56ae1b002bd51887e8 schema:issueNumber 4-5
129 rdf:type schema:PublicationIssue
130 Nbc0a1553324841339b225f08936ddffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Linear Models
132 rdf:type schema:DefinedTerm
133 Nc9c667fcaa4842aaa015bf92887dce74 rdf:first sg:person.01023160475.31
134 rdf:rest N235029eec7844654bc7d6b975835404f
135 Nec81e731c26c457f8f097b2fe647f0b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Cell Cycle
137 rdf:type schema:DefinedTerm
138 Necaf89efce3749eb91694d7872a40296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 Nf661d832fde44db8af23ff04b5bad317 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Computer Simulation
143 rdf:type schema:DefinedTerm
144 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
145 schema:name Mathematical Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
148 schema:name Biological Sciences
149 rdf:type schema:DefinedTerm
150 sg:journal.1081642 schema:issn 0303-6812
151 1432-1416
152 schema:name Journal of Mathematical Biology
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.01023160475.31 schema:affiliation grid-institutes:grid.4777.3
156 schema:familyName McAneney
157 schema:givenName H.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023160475.31
159 rdf:type schema:Person
160 sg:person.013033747266.15 schema:affiliation grid-institutes:grid.4777.3
161 schema:familyName O’Rourke
162 schema:givenName S. F. C.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033747266.15
164 rdf:type schema:Person
165 sg:person.01355305206.37 schema:affiliation grid-institutes:grid.17089.37
166 schema:familyName Hillen
167 schema:givenName T.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355305206.37
169 rdf:type schema:Person
170 sg:pub.10.1007/978-3-642-46656-4_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027546399
171 https://doi.org/10.1007/978-3-642-46656-4_15
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/978-3-642-48681-4_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047316982
174 https://doi.org/10.1007/978-3-642-48681-4_71
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/978-3-642-81519-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052499825
177 https://doi.org/10.1007/978-3-642-81519-5
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/bjc.1996.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005092716
180 https://doi.org/10.1038/bjc.1996.276
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nrc1650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026450668
183 https://doi.org/10.1038/nrc1650
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1742-4682-3-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020322155
186 https://doi.org/10.1186/1742-4682-3-1
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/1742-4682-3-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049887481
189 https://doi.org/10.1186/1742-4682-3-7
190 rdf:type schema:CreativeWork
191 grid-institutes:grid.17089.37 schema:alternateName Department of Mathematical and Statistical Sciences, University of Alberta, T6G 2G1, Edmonton, AB, Canada
192 schema:name Department of Mathematical and Statistical Sciences, University of Alberta, T6G 2G1, Edmonton, AB, Canada
193 rdf:type schema:Organization
194 grid-institutes:grid.4777.3 schema:alternateName Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen’s University Belfast, BT9 7AB, Belfast, UK
195 School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Belfast, UK
196 schema:name Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen’s University Belfast, BT9 7AB, Belfast, UK
197 School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Belfast, UK
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...