Essential Gene Clusters Identified in Stenotrophomonas MB339 for Multiple Metal/Antibiotic Resistance and Xenobiotic Degradation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Fozia Aslam, Azra Yasmin, Torsten Thomas

ABSTRACT

Stenotrophomonas MB339, a bacterium, which could potentially utilize aromatic compounds and tolerate different heavy metals was isolated from industrial wastewater. Subsequent experiments revealed strains ability to resist antibiotics ofloxacin, streptomycin, rifampicillin, erythromycin, ampicillin, clindamycin, and toxicants including As2+, Hg2+, Cu2+, Ni2+, Pb2+. The shotgun sequencing strategy, genome assembly and annotation uncovered specific features, which make this strain MB339 effectively promising to cope with highly contaminated conditions. This report presents isolate's assembled genome and its functional annotation identifying a set of protein coding genes (4711), tRNA (69 genes), and rRNA (9 genes). More than 2900 genes were assigned to various Clusters of Orthologous Groups (COGs) and 1114 genes attributed to 37 different Koyoto Encyclopedia of Genes and Genomes (KEGGs) pathways. Among these annotated genes, eighteen were for key enzymes taking part in xenobiotic degradation. Furthermore, 149 genes have been assigned to virulence, disease, and defense mechanisms responsible for multidrug and metal resistance including mercury, copper, and arsenic operons. These determinants comprised genes for membrane proteins, efflux pumps, and metal reductases, suggesting its potential applications in bioremediation. More... »

PAGES

1484-1492

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00284-018-1549-2

DOI

http://dx.doi.org/10.1007/s00284-018-1549-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106150055

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30109428


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodegradation, Environmental", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Essential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals, Heavy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multigene Family", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stenotrophomonas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waste Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Xenobiotics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fatima Jinnah Women University", 
          "id": "https://www.grid.ac/institutes/grid.444999.d", 
          "name": [
            "Microbiology and Biotechnology Research Labarotory, Department of Environmental Science, Fatima Jinnah Women University, Rawalpindi, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aslam", 
        "givenName": "Fozia", 
        "id": "sg:person.010432740574.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010432740574.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fatima Jinnah Women University", 
          "id": "https://www.grid.ac/institutes/grid.444999.d", 
          "name": [
            "Microbiology and Biotechnology Research Labarotory, Department of Environmental Science, Fatima Jinnah Women University, Rawalpindi, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasmin", 
        "givenName": "Azra", 
        "id": "sg:person.0704263767.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704263767.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UNSW Australia", 
          "id": "https://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "Centre for Marine Bio-innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, 2052, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Torsten", 
        "id": "sg:person.012025701574.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012025701574.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000520351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mst197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001444669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12688/f1000research.8737.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002939411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12688/f1000research.8737.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002939411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl1043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005543336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.00117-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006868674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jac/39.6.707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007129939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evv161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007172052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.4056/sigs.531120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007539462", 
          "https://doi.org/10.4056/sigs.531120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14787210.2016.1193005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007679203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/w01-110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008512868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2013.00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012551119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margen.2014.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013060926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013431920", 
          "https://doi.org/10.1186/1471-2164-9-75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-1261-2_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013602873", 
          "https://doi.org/10.1007/978-1-4939-1261-2_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejar.2016.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019828815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1944-3277-9-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020033599", 
          "https://doi.org/10.1186/1944-3277-9-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2016.01777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020601111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6941.2009.00741.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6941.2009.00741.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-005-5020-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025804452", 
          "https://doi.org/10.1007/s00248-005-5020-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-005-5020-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025804452", 
          "https://doi.org/10.1007/s00248-005-5020-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026423599", 
          "https://doi.org/10.1186/1471-2105-11-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030736062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2012.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034058174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nyas.12948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035566403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036320682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/fmb.09.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038998468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-12-193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040308740", 
          "https://doi.org/10.1186/1471-2180-12-193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040855159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.5.0955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041894290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-7890-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041980093", 
          "https://doi.org/10.1007/978-94-007-7890-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.56.012302.161038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.201200503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042280338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02239-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042875599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13568-016-0269-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043135911", 
          "https://doi.org/10.1186/s13568-016-0269-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13568-016-0269-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043135911", 
          "https://doi.org/10.1186/s13568-016-0269-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph13111047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s11756-010-0145-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048157917", 
          "https://doi.org/10.2478/s11756-010-0145-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048457774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906412106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050756122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tim.2015.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053223621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10934529.2012.689227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058379744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2012.0021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059246094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.01068-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062714303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijmm.2016.2844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071508715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7763/ijesd.2013.v4.338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074034200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074535161", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.serj.2017.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085207550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2017.01341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090744642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jgar.2017.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090780186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2017.01829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091878665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2017.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091994620"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Stenotrophomonas MB339, a bacterium, which could potentially utilize aromatic compounds and tolerate different heavy metals was isolated from industrial wastewater. Subsequent experiments revealed strains ability to resist antibiotics ofloxacin, streptomycin, rifampicillin, erythromycin, ampicillin, clindamycin, and toxicants including As2+, Hg2+, Cu2+, Ni2+, Pb2+. The shotgun sequencing strategy, genome assembly and annotation uncovered specific features, which make this strain MB339 effectively promising to cope with highly contaminated conditions. This report presents isolate's assembled genome and its functional annotation identifying a set of protein coding genes (4711), tRNA (69 genes), and rRNA (9 genes). More than 2900 genes were assigned to various Clusters of Orthologous Groups (COGs) and 1114 genes attributed to 37 different Koyoto Encyclopedia of Genes and Genomes (KEGGs) pathways. Among these annotated genes, eighteen were for key enzymes taking part in xenobiotic degradation. Furthermore, 149 genes have been assigned to virulence, disease, and defense mechanisms responsible for multidrug and metal resistance including mercury, copper, and arsenic operons. These determinants comprised genes for membrane proteins, efflux pumps, and metal reductases, suggesting its potential applications in bioremediation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00284-018-1549-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1088675", 
        "issn": [
          "0343-8651", 
          "1432-0991"
        ], 
        "name": "Current Microbiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "Essential Gene Clusters Identified in Stenotrophomonas MB339 for Multiple Metal/Antibiotic Resistance and Xenobiotic Degradation", 
    "pagination": "1484-1492", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ffe1cbeac665ffdc9a1f1fa1f0926bbec527c2e272a2af8f10f5a43f5e6375d6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30109428"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7808448"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00284-018-1549-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106150055"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00284-018-1549-2", 
      "https://app.dimensions.ai/details/publication/pub.1106150055"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00284-018-1549-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00284-018-1549-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00284-018-1549-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00284-018-1549-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00284-018-1549-2'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      89 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00284-018-1549-2 schema:about N02658e6183f1411094f73fa9bf4c3857
2 N1fcde036056e43f8997af26181cc2d04
3 N3fe8cf2117d24d97a203336c3813dc01
4 N62bdc7b89f9f4c59948864865ccade7c
5 N712aa5174be844849d3de29651aa9673
6 N7f845a63779a4824a8e5fcadf2b63186
7 N9125c27e2d8842b797898b224ffac082
8 Na83882ce16e540a68882311f98a66125
9 Nb4a6c47736094a63a4b373561a29b70e
10 Nd7da548c12234121a79cd0c92e7d46df
11 Ne245265fb8b54729b6a460e5839b36ea
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author Ne6c76724d1004bfd856582389ecd6f25
15 schema:citation sg:pub.10.1007/978-1-4939-1261-2_17
16 sg:pub.10.1007/978-94-007-7890-0_9
17 sg:pub.10.1007/s00248-005-5020-0
18 sg:pub.10.1186/1471-2105-11-119
19 sg:pub.10.1186/1471-2164-9-75
20 sg:pub.10.1186/1471-2180-12-193
21 sg:pub.10.1186/1944-3277-9-30
22 sg:pub.10.1186/s13568-016-0269-x
23 sg:pub.10.2478/s11756-010-0145-0
24 sg:pub.10.4056/sigs.531120
25 https://app.dimensions.ai/details/publication/pub.1074535161
26 https://doi.org/10.1002/pmic.201200503
27 https://doi.org/10.1016/j.biochi.2017.09.016
28 https://doi.org/10.1016/j.chemosphere.2012.05.002
29 https://doi.org/10.1016/j.ejar.2016.11.002
30 https://doi.org/10.1016/j.jgar.2017.05.012
31 https://doi.org/10.1016/j.margen.2014.11.008
32 https://doi.org/10.1016/j.serj.2017.05.002
33 https://doi.org/10.1016/j.tim.2015.07.006
34 https://doi.org/10.1073/pnas.0906412106
35 https://doi.org/10.1080/10934529.2012.689227
36 https://doi.org/10.1080/14787210.2016.1193005
37 https://doi.org/10.1089/cmb.2012.0021
38 https://doi.org/10.1093/bioinformatics/btt086
39 https://doi.org/10.1093/bioinformatics/btu031
40 https://doi.org/10.1093/gbe/evv161
41 https://doi.org/10.1093/jac/39.6.707
42 https://doi.org/10.1093/molbev/mst197
43 https://doi.org/10.1093/nar/25.5.0955
44 https://doi.org/10.1093/nar/gkl1043
45 https://doi.org/10.1093/nar/gkm160
46 https://doi.org/10.1093/nar/gkr1065
47 https://doi.org/10.1093/nar/gkt963
48 https://doi.org/10.1111/j.1574-6941.2009.00741.x
49 https://doi.org/10.1111/nyas.12948
50 https://doi.org/10.1128/aem.02239-08
51 https://doi.org/10.1128/cmr.00117-14
52 https://doi.org/10.1128/genomea.01068-16
53 https://doi.org/10.1139/w01-110
54 https://doi.org/10.1146/annurev.micro.56.012302.161038
55 https://doi.org/10.12688/f1000research.8737.1
56 https://doi.org/10.2217/fmb.09.45
57 https://doi.org/10.3389/fmicb.2013.00007
58 https://doi.org/10.3389/fmicb.2016.01777
59 https://doi.org/10.3389/fmicb.2017.01341
60 https://doi.org/10.3389/fmicb.2017.01829
61 https://doi.org/10.3390/ijerph13111047
62 https://doi.org/10.3892/ijmm.2016.2844
63 https://doi.org/10.7763/ijesd.2013.v4.338
64 schema:datePublished 2018-11
65 schema:datePublishedReg 2018-11-01
66 schema:description Stenotrophomonas MB339, a bacterium, which could potentially utilize aromatic compounds and tolerate different heavy metals was isolated from industrial wastewater. Subsequent experiments revealed strains ability to resist antibiotics ofloxacin, streptomycin, rifampicillin, erythromycin, ampicillin, clindamycin, and toxicants including As<sup>2+</sup>, Hg<sup>2+</sup>, Cu<sup>2+</sup>, Ni<sup>2+</sup>, Pb<sup>2+</sup>. The shotgun sequencing strategy, genome assembly and annotation uncovered specific features, which make this strain MB339 effectively promising to cope with highly contaminated conditions. This report presents isolate's assembled genome and its functional annotation identifying a set of protein coding genes (4711), tRNA (69 genes), and rRNA (9 genes). More than 2900 genes were assigned to various Clusters of Orthologous Groups (COGs) and 1114 genes attributed to 37 different Koyoto Encyclopedia of Genes and Genomes (KEGGs) pathways. Among these annotated genes, eighteen were for key enzymes taking part in xenobiotic degradation. Furthermore, 149 genes have been assigned to virulence, disease, and defense mechanisms responsible for multidrug and metal resistance including mercury, copper, and arsenic operons. These determinants comprised genes for membrane proteins, efflux pumps, and metal reductases, suggesting its potential applications in bioremediation.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree false
70 schema:isPartOf N7935e51a07d94303bf5b04e6461d8102
71 Nf199f742cadd476b93c1e86cb40c32ec
72 sg:journal.1088675
73 schema:name Essential Gene Clusters Identified in Stenotrophomonas MB339 for Multiple Metal/Antibiotic Resistance and Xenobiotic Degradation
74 schema:pagination 1484-1492
75 schema:productId N0ecd5d7d288040a8abcb8db01134caa0
76 N696a9b93a5b544ddb15b3e755c1d0d5c
77 N6a5cbb5d5a3045afb6f2ea7afb8c24b7
78 N74c28b21f1534e75bafb5229ecc056f1
79 Nd4460b1bef32403f87a0d5f2a6743180
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106150055
81 https://doi.org/10.1007/s00284-018-1549-2
82 schema:sdDatePublished 2019-04-10T21:00
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N077555dda52d4d5288e7a0eb2d2ad238
85 schema:url https://link.springer.com/10.1007%2Fs00284-018-1549-2
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N02658e6183f1411094f73fa9bf4c3857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Xenobiotics
91 rdf:type schema:DefinedTerm
92 N077555dda52d4d5288e7a0eb2d2ad238 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N0ecd5d7d288040a8abcb8db01134caa0 schema:name nlm_unique_id
95 schema:value 7808448
96 rdf:type schema:PropertyValue
97 N1fcde036056e43f8997af26181cc2d04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Metals, Heavy
99 rdf:type schema:DefinedTerm
100 N3fe8cf2117d24d97a203336c3813dc01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Bacterial Proteins
102 rdf:type schema:DefinedTerm
103 N4490086e86454d2a8daa019332738a0e rdf:first sg:person.012025701574.02
104 rdf:rest rdf:nil
105 N62bdc7b89f9f4c59948864865ccade7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Anti-Bacterial Agents
107 rdf:type schema:DefinedTerm
108 N696a9b93a5b544ddb15b3e755c1d0d5c schema:name pubmed_id
109 schema:value 30109428
110 rdf:type schema:PropertyValue
111 N6a5cbb5d5a3045afb6f2ea7afb8c24b7 schema:name doi
112 schema:value 10.1007/s00284-018-1549-2
113 rdf:type schema:PropertyValue
114 N712aa5174be844849d3de29651aa9673 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Drug Resistance, Bacterial
116 rdf:type schema:DefinedTerm
117 N74c28b21f1534e75bafb5229ecc056f1 schema:name readcube_id
118 schema:value ffe1cbeac665ffdc9a1f1fa1f0926bbec527c2e272a2af8f10f5a43f5e6375d6
119 rdf:type schema:PropertyValue
120 N7935e51a07d94303bf5b04e6461d8102 schema:volumeNumber 75
121 rdf:type schema:PublicationVolume
122 N7f845a63779a4824a8e5fcadf2b63186 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Waste Water
124 rdf:type schema:DefinedTerm
125 N9125c27e2d8842b797898b224ffac082 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Multigene Family
127 rdf:type schema:DefinedTerm
128 Na83882ce16e540a68882311f98a66125 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Biodegradation, Environmental
130 rdf:type schema:DefinedTerm
131 Nb4a6c47736094a63a4b373561a29b70e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Genome, Bacterial
133 rdf:type schema:DefinedTerm
134 Nd4460b1bef32403f87a0d5f2a6743180 schema:name dimensions_id
135 schema:value pub.1106150055
136 rdf:type schema:PropertyValue
137 Nd7da548c12234121a79cd0c92e7d46df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Genes, Essential
139 rdf:type schema:DefinedTerm
140 Ne245265fb8b54729b6a460e5839b36ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Stenotrophomonas
142 rdf:type schema:DefinedTerm
143 Ne6c76724d1004bfd856582389ecd6f25 rdf:first sg:person.010432740574.68
144 rdf:rest Nef7c82c227104d28befec5fbc736622b
145 Nef7c82c227104d28befec5fbc736622b rdf:first sg:person.0704263767.24
146 rdf:rest N4490086e86454d2a8daa019332738a0e
147 Nf199f742cadd476b93c1e86cb40c32ec schema:issueNumber 11
148 rdf:type schema:PublicationIssue
149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biological Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
153 schema:name Genetics
154 rdf:type schema:DefinedTerm
155 sg:journal.1088675 schema:issn 0343-8651
156 1432-0991
157 schema:name Current Microbiology
158 rdf:type schema:Periodical
159 sg:person.010432740574.68 schema:affiliation https://www.grid.ac/institutes/grid.444999.d
160 schema:familyName Aslam
161 schema:givenName Fozia
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010432740574.68
163 rdf:type schema:Person
164 sg:person.012025701574.02 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
165 schema:familyName Thomas
166 schema:givenName Torsten
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012025701574.02
168 rdf:type schema:Person
169 sg:person.0704263767.24 schema:affiliation https://www.grid.ac/institutes/grid.444999.d
170 schema:familyName Yasmin
171 schema:givenName Azra
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704263767.24
173 rdf:type schema:Person
174 sg:pub.10.1007/978-1-4939-1261-2_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013602873
175 https://doi.org/10.1007/978-1-4939-1261-2_17
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/978-94-007-7890-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041980093
178 https://doi.org/10.1007/978-94-007-7890-0_9
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00248-005-5020-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025804452
181 https://doi.org/10.1007/s00248-005-5020-0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
184 https://doi.org/10.1186/1471-2105-11-119
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/1471-2164-9-75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013431920
187 https://doi.org/10.1186/1471-2164-9-75
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/1471-2180-12-193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040308740
190 https://doi.org/10.1186/1471-2180-12-193
191 rdf:type schema:CreativeWork
192 sg:pub.10.1186/1944-3277-9-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020033599
193 https://doi.org/10.1186/1944-3277-9-30
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/s13568-016-0269-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043135911
196 https://doi.org/10.1186/s13568-016-0269-x
197 rdf:type schema:CreativeWork
198 sg:pub.10.2478/s11756-010-0145-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048157917
199 https://doi.org/10.2478/s11756-010-0145-0
200 rdf:type schema:CreativeWork
201 sg:pub.10.4056/sigs.531120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007539462
202 https://doi.org/10.4056/sigs.531120
203 rdf:type schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1074535161 schema:CreativeWork
205 https://doi.org/10.1002/pmic.201200503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042280338
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.biochi.2017.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091994620
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.chemosphere.2012.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034058174
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.ejar.2016.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019828815
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.jgar.2017.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090780186
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.margen.2014.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013060926
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.serj.2017.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085207550
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.tim.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053223621
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.0906412106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050756122
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1080/10934529.2012.689227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058379744
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1080/14787210.2016.1193005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007679203
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1089/cmb.2012.0021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059246094
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/bioinformatics/btt086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000520351
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/bioinformatics/btu031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036320682
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/gbe/evv161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007172052
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/jac/39.6.707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007129939
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/molbev/mst197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001444669
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/25.5.0955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041894290
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/nar/gkl1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005543336
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/nar/gkm160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030736062
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/nar/gkr1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048457774
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/nar/gkt963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040855159
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/j.1574-6941.2009.00741.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025508990
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1111/nyas.12948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035566403
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1128/aem.02239-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042875599
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1128/cmr.00117-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006868674
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1128/genomea.01068-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062714303
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1139/w01-110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008512868
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1146/annurev.micro.56.012302.161038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042155909
262 rdf:type schema:CreativeWork
263 https://doi.org/10.12688/f1000research.8737.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002939411
264 rdf:type schema:CreativeWork
265 https://doi.org/10.2217/fmb.09.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038998468
266 rdf:type schema:CreativeWork
267 https://doi.org/10.3389/fmicb.2013.00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012551119
268 rdf:type schema:CreativeWork
269 https://doi.org/10.3389/fmicb.2016.01777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020601111
270 rdf:type schema:CreativeWork
271 https://doi.org/10.3389/fmicb.2017.01341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090744642
272 rdf:type schema:CreativeWork
273 https://doi.org/10.3389/fmicb.2017.01829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091878665
274 rdf:type schema:CreativeWork
275 https://doi.org/10.3390/ijerph13111047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381735
276 rdf:type schema:CreativeWork
277 https://doi.org/10.3892/ijmm.2016.2844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071508715
278 rdf:type schema:CreativeWork
279 https://doi.org/10.7763/ijesd.2013.v4.338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074034200
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
282 schema:name Centre for Marine Bio-innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, 2052, Sydney, NSW, Australia
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.444999.d schema:alternateName Fatima Jinnah Women University
285 schema:name Microbiology and Biotechnology Research Labarotory, Department of Environmental Science, Fatima Jinnah Women University, Rawalpindi, Pakistan
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...