Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Harinder Gill, Ho-Wan Ip, Rita Yim, Wing-Fai Tang, Herbert H. Pang, Paul Lee, Garret M. K. Leung, Jamilla Li, Karen Tang, Jason C. C. So, Rock Y. Y. Leung, Jun Li, Gianni Panagioutou, Clarence C. K. Lam, Yok-Lam Kwong

ABSTRACT

Current prognostication in myelofibrosis (MF) is based on clinicopathological features and mutations in a limited number of driver genes. The impact of other genetic mutations remains unclear. We evaluated for mutations in a myeloid panel of 54 genes using next-generation sequencing. Multivariate Cox regression analysis was used to determine prognostic factors for overall survival (OS) and leukaemia-free survival (LFS), based on mutations of these genes and relevant clinical and haematological features. One hundred and one patients (primary MF, N = 70; secondary MF, N = 31) with a median follow-up of 49 (1-256) months were studied. For the entire cohort, inferior OS was associated with male gender (P = 0.04), age > 65 years (P = 0.04), haemoglobin < 10 g/dL (P = 0.001), CUX1 mutation (P = 0.003) and TP53 mutation (P = 0.049); and inferior LFS was associated with male gender (P = 0.03), haemoglobin < 10 g/dL (P = 0.04) and SRSF2 mutations (P = 0.008). In primary MF, inferior OS was associated with male gender (P = 0.03), haemoglobin < 10 g/dL (P = 0.002), platelet count < 100 × 109/L (P = 0.02), TET2 mutation (P = 0.01) and CUX1 mutation (P = 0.01); and inferior LFS was associated with haemoglobin < 10 g/dL (P = 0.02), platelet count < 100 × 109/L (P = 0.02), TET2 mutations (P = 0.01) and CUX1 mutations (P = 0.04). These results showed that clinical and haematological features and genetic mutations should be considered in MF prognostication. More... »

PAGES

869-879

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00277-018-3563-7

DOI

http://dx.doi.org/10.1007/s00277-018-3563-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110371899

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30515541


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Mutational Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease-Free Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Platelet Count", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primary Myelofibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Medicine, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gill", 
        "givenName": "Harinder", 
        "id": "sg:person.01171470630.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171470630.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Pathology, Queen Mary Hospital, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ip", 
        "givenName": "Ho-Wan", 
        "id": "sg:person.0740376214.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740376214.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Medicine, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yim", 
        "givenName": "Rita", 
        "id": "sg:person.01020761022.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020761022.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Pathology, Queen Mary Hospital, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Wing-Fai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "School of Public Health, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Herbert H.", 
        "id": "sg:person.0675044633.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675044633.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Medicine, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Medicine, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Garret M. K.", 
        "id": "sg:person.016453003452.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453003452.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Medicine, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jamilla", 
        "id": "sg:person.014201605037.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201605037.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Medicine, The University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Karen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Pathology, Queen Mary Hospital, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "So", 
        "givenName": "Jason C. C.", 
        "id": "sg:person.011776626332.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776626332.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Pathology, Queen Mary Hospital, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Rock Y. Y.", 
        "id": "sg:person.0764265466.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764265466.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "The Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jun", 
        "id": "sg:person.01120461253.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120461253.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hans Kn\u00f6ll Institute", 
          "id": "https://www.grid.ac/institutes/grid.418398.f", 
          "name": [
            "Systems Biology Group, School of Biological Sciences, The University of Hong Kong, Hong Kong, China", 
            "Leibniz Institute for Natural Product Research and Infection Biology, Hans Kn\u00f6ll Institute, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panagioutou", 
        "givenName": "Gianni", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Pathology, Queen Mary Hospital, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lam", 
        "givenName": "Clarence C. K.", 
        "id": "sg:person.016560153162.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560153162.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Medicine, The University of Hong Kong, Hong Kong, China", 
            "Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwong", 
        "givenName": "Yok-Lam", 
        "id": "sg:person.01100514066.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100514066.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1200/jco.2010.32.2446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003184844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2014.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009470452", 
          "https://doi.org/10.1038/leu.2014.76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2014.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009470452", 
          "https://doi.org/10.1038/leu.2014.76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2015-07-661835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009849017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2014-05-579136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010215758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010438464", 
          "https://doi.org/10.1038/ng.2696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.05.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011680451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2008-07-170449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011774727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajh.24377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012678038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012926250", 
          "https://doi.org/10.1038/nm.3733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmc1012718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016633781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2015-03-633404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017078762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2404914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017755036", 
          "https://doi.org/10.1038/sj.leu.2404914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2011-07-365320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018049297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.092759.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020163602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2013.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021721791", 
          "https://doi.org/10.1038/leu.2013.119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812064", 
          "https://doi.org/10.1038/nature15393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2015.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023077044", 
          "https://doi.org/10.1038/gim.2015.47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2013.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023877823", 
          "https://doi.org/10.1038/leu.2013.97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024062170", 
          "https://doi.org/10.1038/ng.2846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2014-05-578435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025922370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1013343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027110305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0094554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031526847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032266264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3324/haematol.2016.149765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032574618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033243130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2007-01-069542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033760105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2014.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034707344", 
          "https://doi.org/10.1038/leu.2014.57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv1222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034754276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2016.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037318750", 
          "https://doi.org/10.1038/leu.2016.351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.129684.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038753295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3324/haematol.2010.021808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041059847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041474443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042720804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044759903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2009-06-223982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045039321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmc091348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048899428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2016-03-643544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049256958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2009.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050147090", 
          "https://doi.org/10.1038/leu.2009.47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajh.22069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052866315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2009-09-245837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053328676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053699161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2016-10-695940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064123401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3324/haematol.2014.113845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071145235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2017.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085731632", 
          "https://doi.org/10.1038/leu.2017.169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090336724", 
          "https://doi.org/10.1038/ng.3909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090336724", 
          "https://doi.org/10.1038/ng.3909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2017.76.4886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099636539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41375-018-0107-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101699329", 
          "https://doi.org/10.1038/s41375-018-0107-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41375-018-0107-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101699329", 
          "https://doi.org/10.1038/s41375-018-0107-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41375-018-0107-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101699329", 
          "https://doi.org/10.1038/s41375-018-0107-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2017-10-810028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101851256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajh.25230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105776245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41408-018-0109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105911435", 
          "https://doi.org/10.1038/s41408-018-0109-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41408-018-0109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105911435", 
          "https://doi.org/10.1038/s41408-018-0109-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41408-018-0109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105911435", 
          "https://doi.org/10.1038/s41408-018-0109-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Current prognostication in myelofibrosis (MF) is based on clinicopathological features and mutations in a limited number of driver genes. The impact of other genetic mutations remains unclear. We evaluated for mutations in a myeloid panel of 54 genes using next-generation sequencing. Multivariate Cox regression analysis was used to determine prognostic factors for overall survival (OS) and leukaemia-free survival (LFS), based on mutations of these genes and relevant clinical and haematological features. One hundred and one patients (primary MF, N\u2009=\u200970; secondary MF, N\u2009=\u200931) with a median follow-up of 49 (1-256) months were studied. For the entire cohort, inferior OS was associated with male gender (P\u2009=\u20090.04), age >\u200965\u00a0years (P\u2009=\u20090.04), haemoglobin <\u200910\u00a0g/dL (P\u2009=\u20090.001), CUX1 mutation (P\u2009=\u20090.003) and TP53 mutation (P\u2009=\u20090.049); and inferior LFS was associated with male gender (P\u2009=\u20090.03), haemoglobin <\u200910\u00a0g/dL (P\u2009=\u20090.04) and SRSF2 mutations (P\u2009=\u20090.008). In primary MF, inferior OS was associated with male gender (P\u2009=\u20090.03), haemoglobin <\u200910\u00a0g/dL (P\u2009=\u20090.002), platelet count <\u2009100\u2009\u00d7\u2009109/L (P\u2009=\u20090.02), TET2 mutation (P\u2009=\u20090.01) and CUX1 mutation (P\u2009=\u20090.01); and inferior LFS was associated with haemoglobin <\u200910\u00a0g/dL (P\u2009=\u20090.02), platelet count <\u2009100\u2009\u00d7\u2009109/L (P\u2009=\u20090.02), TET2 mutations (P\u2009=\u20090.01) and CUX1 mutations (P\u2009=\u20090.04). These results showed that clinical and haematological features and genetic mutations should be considered in MF prognostication.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00277-018-3563-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018247", 
        "issn": [
          "1269-3286", 
          "1279-8509"
        ], 
        "name": "Annals of Hematology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98"
      }
    ], 
    "name": "Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis", 
    "pagination": "869-879", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "29ebcb06e9fede1eebe1988026907694360603c98f34511a07292a97e6908f07"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30515541"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9107334"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00277-018-3563-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110371899"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00277-018-3563-7", 
      "https://app.dimensions.ai/details/publication/pub.1110371899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112048_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00277-018-3563-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00277-018-3563-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00277-018-3563-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00277-018-3563-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00277-018-3563-7'


 

This table displays all metadata directly associated to this object as RDF triples.

422 TRIPLES      21 PREDICATES      100 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00277-018-3563-7 schema:about N0b5c576c8a0e4007b645454cf423ecdc
2 N0e5be53b30db42c6bca49dbd286acd26
3 N150ed2f4cafa426286c6f9dd4a60cb24
4 N392a88e0afeb44ff9f4832bde48137b5
5 N48cdfd5c39374632a71135520daebac4
6 N6584db1f8efe4c5faf28a9969d85721b
7 N69c828dc5cb74e17bf01cc113bdb5861
8 N88dfe442b67d4a729d7fb56d25a40684
9 N9b124b8607ff4dfa866d60caf30c1984
10 Na3d60851f91344aa89dd3e08a11843d1
11 Na534175ae6f142aba53af5b21dcf58e4
12 Naa21b6b728e8407987912569e4469e94
13 Nc217fa8a0513482d83aa9ced342fed2b
14 Nc34ac78ecd5c49619365ff76fae20840
15 Nc5bc4e63f74a4f73bdc17bcdcc1e4dc8
16 Nd3bc6ac437154825a81e76a3d5c2eb71
17 Nd9b3cd68275a468491bb8b4e93dc7103
18 Ndd4be5630ab14eda8fabbf95c7948f76
19 anzsrc-for:06
20 anzsrc-for:0604
21 schema:author N4262f38fc39e405081df3a01f35d97cc
22 schema:citation sg:pub.10.1038/gim.2015.47
23 sg:pub.10.1038/leu.2009.47
24 sg:pub.10.1038/leu.2013.119
25 sg:pub.10.1038/leu.2013.97
26 sg:pub.10.1038/leu.2014.57
27 sg:pub.10.1038/leu.2014.76
28 sg:pub.10.1038/leu.2016.351
29 sg:pub.10.1038/leu.2017.169
30 sg:pub.10.1038/nature15393
31 sg:pub.10.1038/ng.2696
32 sg:pub.10.1038/ng.2846
33 sg:pub.10.1038/ng.3909
34 sg:pub.10.1038/nm.3733
35 sg:pub.10.1038/s41375-018-0107-z
36 sg:pub.10.1038/s41408-018-0109-0
37 sg:pub.10.1038/sj.leu.2404914
38 https://doi.org/10.1002/ajh.22069
39 https://doi.org/10.1002/ajh.24377
40 https://doi.org/10.1002/ajh.25230
41 https://doi.org/10.1002/humu.22932
42 https://doi.org/10.1016/j.ccr.2014.02.008
43 https://doi.org/10.1016/j.cell.2013.05.041
44 https://doi.org/10.1056/nejmc091348
45 https://doi.org/10.1056/nejmc1012718
46 https://doi.org/10.1056/nejmoa1013343
47 https://doi.org/10.1093/bioinformatics/btp352
48 https://doi.org/10.1093/bioinformatics/btp394
49 https://doi.org/10.1093/bioinformatics/btu170
50 https://doi.org/10.1093/nar/gkq603
51 https://doi.org/10.1093/nar/gkv1222
52 https://doi.org/10.1093/nar/gkw1121
53 https://doi.org/10.1101/gr.092759.109
54 https://doi.org/10.1101/gr.107524.110
55 https://doi.org/10.1101/gr.129684.111
56 https://doi.org/10.1126/science.1102160
57 https://doi.org/10.1182/blood-2007-01-069542
58 https://doi.org/10.1182/blood-2008-07-170449
59 https://doi.org/10.1182/blood-2009-06-223982
60 https://doi.org/10.1182/blood-2009-09-245837
61 https://doi.org/10.1182/blood-2011-07-365320
62 https://doi.org/10.1182/blood-2014-05-578435
63 https://doi.org/10.1182/blood-2014-05-579136
64 https://doi.org/10.1182/blood-2015-03-633404
65 https://doi.org/10.1182/blood-2015-07-661835
66 https://doi.org/10.1182/blood-2016-03-643544
67 https://doi.org/10.1182/blood-2016-10-695940
68 https://doi.org/10.1182/blood-2017-10-810028
69 https://doi.org/10.1200/jco.2010.32.2446
70 https://doi.org/10.1200/jco.2017.76.4886
71 https://doi.org/10.1371/journal.pone.0094554
72 https://doi.org/10.3324/haematol.2010.021808
73 https://doi.org/10.3324/haematol.2014.113845
74 https://doi.org/10.3324/haematol.2016.149765
75 schema:datePublished 2019-04
76 schema:datePublishedReg 2019-04-01
77 schema:description Current prognostication in myelofibrosis (MF) is based on clinicopathological features and mutations in a limited number of driver genes. The impact of other genetic mutations remains unclear. We evaluated for mutations in a myeloid panel of 54 genes using next-generation sequencing. Multivariate Cox regression analysis was used to determine prognostic factors for overall survival (OS) and leukaemia-free survival (LFS), based on mutations of these genes and relevant clinical and haematological features. One hundred and one patients (primary MF, N = 70; secondary MF, N = 31) with a median follow-up of 49 (1-256) months were studied. For the entire cohort, inferior OS was associated with male gender (P = 0.04), age &gt; 65 years (P = 0.04), haemoglobin &lt; 10 g/dL (P = 0.001), CUX1 mutation (P = 0.003) and TP53 mutation (P = 0.049); and inferior LFS was associated with male gender (P = 0.03), haemoglobin &lt; 10 g/dL (P = 0.04) and SRSF2 mutations (P = 0.008). In primary MF, inferior OS was associated with male gender (P = 0.03), haemoglobin &lt; 10 g/dL (P = 0.002), platelet count &lt; 100 × 10<sup>9</sup>/L (P = 0.02), TET2 mutation (P = 0.01) and CUX1 mutation (P = 0.01); and inferior LFS was associated with haemoglobin &lt; 10 g/dL (P = 0.02), platelet count &lt; 100 × 10<sup>9</sup>/L (P = 0.02), TET2 mutations (P = 0.01) and CUX1 mutations (P = 0.04). These results showed that clinical and haematological features and genetic mutations should be considered in MF prognostication.
78 schema:genre research_article
79 schema:inLanguage en
80 schema:isAccessibleForFree false
81 schema:isPartOf N9673317a40e34b1184ddb38238b36cfc
82 N9a45e958d4ca40babea54b999f09e536
83 sg:journal.1018247
84 schema:name Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis
85 schema:pagination 869-879
86 schema:productId N1abc6be9cb1449738acd23c5cfb759ab
87 N21d00c087b7044a197ffa435e50bd424
88 N5a32102de5524594ad440671f0a5601c
89 Neec4530f9b8d466ca25814d493c153c7
90 Nfd8239ce4aae4a4cb6dd50329caf0ce5
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110371899
92 https://doi.org/10.1007/s00277-018-3563-7
93 schema:sdDatePublished 2019-04-11T13:04
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N06e850f58c6e47209ae84d62b8376b06
96 schema:url https://link.springer.com/10.1007%2Fs00277-018-3563-7
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N0464626851b048ec817348e43c858a87 rdf:first sg:person.014201605037.80
101 rdf:rest N83212fc084b945d4acaa25fdae4eccd4
102 N04984739c68448858aa70198c4b5aa7f schema:affiliation https://www.grid.ac/institutes/grid.415550.0
103 schema:familyName Tang
104 schema:givenName Karen
105 rdf:type schema:Person
106 N05570298bfa54d4a98067362599ec2b0 rdf:first Nbb3f2b6eccd841b4b8fba2e075cc209c
107 rdf:rest Nfeefe98d7bfb46e6aab9edde0cc0596c
108 N06e850f58c6e47209ae84d62b8376b06 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N0b5c576c8a0e4007b645454cf423ecdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 N0def73bf31af4fea89876e36da8f43a0 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
114 schema:familyName Tang
115 schema:givenName Wing-Fai
116 rdf:type schema:Person
117 N0e5be53b30db42c6bca49dbd286acd26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Aged, 80 and over
119 rdf:type schema:DefinedTerm
120 N150ed2f4cafa426286c6f9dd4a60cb24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Aged
122 rdf:type schema:DefinedTerm
123 N1abc6be9cb1449738acd23c5cfb759ab schema:name doi
124 schema:value 10.1007/s00277-018-3563-7
125 rdf:type schema:PropertyValue
126 N21d00c087b7044a197ffa435e50bd424 schema:name readcube_id
127 schema:value 29ebcb06e9fede1eebe1988026907694360603c98f34511a07292a97e6908f07
128 rdf:type schema:PropertyValue
129 N25e5c54c8ecb40e796e826b8a899e383 rdf:first sg:person.01100514066.14
130 rdf:rest rdf:nil
131 N2a7ea44efe4b484e800be07e4c207411 rdf:first sg:person.016453003452.14
132 rdf:rest N0464626851b048ec817348e43c858a87
133 N3850c0c563dd4d13b00210e28b5e5797 rdf:first sg:person.01020761022.29
134 rdf:rest N64a0dec67aab46558f6d670a8d816c7d
135 N392a88e0afeb44ff9f4832bde48137b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name DNA Mutational Analysis
137 rdf:type schema:DefinedTerm
138 N4262f38fc39e405081df3a01f35d97cc rdf:first sg:person.01171470630.09
139 rdf:rest N664e56c7fbc14d7e84cf39534fc8dc92
140 N48cdfd5c39374632a71135520daebac4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name China
142 rdf:type schema:DefinedTerm
143 N54531a4a3afa4d12b76b82b414e479f4 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
144 schema:familyName Lee
145 schema:givenName Paul
146 rdf:type schema:Person
147 N5a32102de5524594ad440671f0a5601c schema:name dimensions_id
148 schema:value pub.1110371899
149 rdf:type schema:PropertyValue
150 N64a0dec67aab46558f6d670a8d816c7d rdf:first N0def73bf31af4fea89876e36da8f43a0
151 rdf:rest N656230a6e24340e79e52459b50fc4d06
152 N656230a6e24340e79e52459b50fc4d06 rdf:first sg:person.0675044633.36
153 rdf:rest Nd91dfdf760e34de78dcb290f058c0236
154 N6584db1f8efe4c5faf28a9969d85721b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Sex Factors
156 rdf:type schema:DefinedTerm
157 N664e56c7fbc14d7e84cf39534fc8dc92 rdf:first sg:person.0740376214.17
158 rdf:rest N3850c0c563dd4d13b00210e28b5e5797
159 N69c828dc5cb74e17bf01cc113bdb5861 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Survival Rate
161 rdf:type schema:DefinedTerm
162 N83212fc084b945d4acaa25fdae4eccd4 rdf:first N04984739c68448858aa70198c4b5aa7f
163 rdf:rest N9fc3003a1ec84aed96d7e39879512586
164 N88dfe442b67d4a729d7fb56d25a40684 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Mutation
166 rdf:type schema:DefinedTerm
167 N9673317a40e34b1184ddb38238b36cfc schema:issueNumber 4
168 rdf:type schema:PublicationIssue
169 N9a45e958d4ca40babea54b999f09e536 schema:volumeNumber 98
170 rdf:type schema:PublicationVolume
171 N9b124b8607ff4dfa866d60caf30c1984 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Female
173 rdf:type schema:DefinedTerm
174 N9fc3003a1ec84aed96d7e39879512586 rdf:first sg:person.011776626332.18
175 rdf:rest Ne8a9640836114b768b983f714b0fb43f
176 Na3d60851f91344aa89dd3e08a11843d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Primary Myelofibrosis
178 rdf:type schema:DefinedTerm
179 Na534175ae6f142aba53af5b21dcf58e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Follow-Up Studies
181 rdf:type schema:DefinedTerm
182 Naa21b6b728e8407987912569e4469e94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Asian Continental Ancestry Group
184 rdf:type schema:DefinedTerm
185 Nbb3f2b6eccd841b4b8fba2e075cc209c schema:affiliation https://www.grid.ac/institutes/grid.418398.f
186 schema:familyName Panagioutou
187 schema:givenName Gianni
188 rdf:type schema:Person
189 Nc217fa8a0513482d83aa9ced342fed2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Platelet Count
191 rdf:type schema:DefinedTerm
192 Nc34ac78ecd5c49619365ff76fae20840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Middle Aged
194 rdf:type schema:DefinedTerm
195 Nc5bc4e63f74a4f73bdc17bcdcc1e4dc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name High-Throughput Nucleotide Sequencing
197 rdf:type schema:DefinedTerm
198 Nd3bc6ac437154825a81e76a3d5c2eb71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Disease-Free Survival
200 rdf:type schema:DefinedTerm
201 Nd91dfdf760e34de78dcb290f058c0236 rdf:first N54531a4a3afa4d12b76b82b414e479f4
202 rdf:rest N2a7ea44efe4b484e800be07e4c207411
203 Nd9b3cd68275a468491bb8b4e93dc7103 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Adult
205 rdf:type schema:DefinedTerm
206 Ndd4be5630ab14eda8fabbf95c7948f76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Humans
208 rdf:type schema:DefinedTerm
209 Ne8a9640836114b768b983f714b0fb43f rdf:first sg:person.0764265466.81
210 rdf:rest Nfa4520d7a85243d693310b6acd813221
211 Neec4530f9b8d466ca25814d493c153c7 schema:name pubmed_id
212 schema:value 30515541
213 rdf:type schema:PropertyValue
214 Nfa4520d7a85243d693310b6acd813221 rdf:first sg:person.01120461253.48
215 rdf:rest N05570298bfa54d4a98067362599ec2b0
216 Nfd8239ce4aae4a4cb6dd50329caf0ce5 schema:name nlm_unique_id
217 schema:value 9107334
218 rdf:type schema:PropertyValue
219 Nfeefe98d7bfb46e6aab9edde0cc0596c rdf:first sg:person.016560153162.14
220 rdf:rest N25e5c54c8ecb40e796e826b8a899e383
221 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
222 schema:name Biological Sciences
223 rdf:type schema:DefinedTerm
224 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
225 schema:name Genetics
226 rdf:type schema:DefinedTerm
227 sg:journal.1018247 schema:issn 1269-3286
228 1279-8509
229 schema:name Annals of Hematology
230 rdf:type schema:Periodical
231 sg:person.01020761022.29 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
232 schema:familyName Yim
233 schema:givenName Rita
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020761022.29
235 rdf:type schema:Person
236 sg:person.01100514066.14 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
237 schema:familyName Kwong
238 schema:givenName Yok-Lam
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100514066.14
240 rdf:type schema:Person
241 sg:person.01120461253.48 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
242 schema:familyName Li
243 schema:givenName Jun
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120461253.48
245 rdf:type schema:Person
246 sg:person.01171470630.09 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
247 schema:familyName Gill
248 schema:givenName Harinder
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171470630.09
250 rdf:type schema:Person
251 sg:person.011776626332.18 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
252 schema:familyName So
253 schema:givenName Jason C. C.
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776626332.18
255 rdf:type schema:Person
256 sg:person.014201605037.80 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
257 schema:familyName Li
258 schema:givenName Jamilla
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201605037.80
260 rdf:type schema:Person
261 sg:person.016453003452.14 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
262 schema:familyName Leung
263 schema:givenName Garret M. K.
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453003452.14
265 rdf:type schema:Person
266 sg:person.016560153162.14 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
267 schema:familyName Lam
268 schema:givenName Clarence C. K.
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560153162.14
270 rdf:type schema:Person
271 sg:person.0675044633.36 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
272 schema:familyName Pang
273 schema:givenName Herbert H.
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675044633.36
275 rdf:type schema:Person
276 sg:person.0740376214.17 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
277 schema:familyName Ip
278 schema:givenName Ho-Wan
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740376214.17
280 rdf:type schema:Person
281 sg:person.0764265466.81 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
282 schema:familyName Leung
283 schema:givenName Rock Y. Y.
284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764265466.81
285 rdf:type schema:Person
286 sg:pub.10.1038/gim.2015.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023077044
287 https://doi.org/10.1038/gim.2015.47
288 rdf:type schema:CreativeWork
289 sg:pub.10.1038/leu.2009.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050147090
290 https://doi.org/10.1038/leu.2009.47
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/leu.2013.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021721791
293 https://doi.org/10.1038/leu.2013.119
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/leu.2013.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023877823
296 https://doi.org/10.1038/leu.2013.97
297 rdf:type schema:CreativeWork
298 sg:pub.10.1038/leu.2014.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034707344
299 https://doi.org/10.1038/leu.2014.57
300 rdf:type schema:CreativeWork
301 sg:pub.10.1038/leu.2014.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009470452
302 https://doi.org/10.1038/leu.2014.76
303 rdf:type schema:CreativeWork
304 sg:pub.10.1038/leu.2016.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037318750
305 https://doi.org/10.1038/leu.2016.351
306 rdf:type schema:CreativeWork
307 sg:pub.10.1038/leu.2017.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085731632
308 https://doi.org/10.1038/leu.2017.169
309 rdf:type schema:CreativeWork
310 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
311 https://doi.org/10.1038/nature15393
312 rdf:type schema:CreativeWork
313 sg:pub.10.1038/ng.2696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010438464
314 https://doi.org/10.1038/ng.2696
315 rdf:type schema:CreativeWork
316 sg:pub.10.1038/ng.2846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024062170
317 https://doi.org/10.1038/ng.2846
318 rdf:type schema:CreativeWork
319 sg:pub.10.1038/ng.3909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090336724
320 https://doi.org/10.1038/ng.3909
321 rdf:type schema:CreativeWork
322 sg:pub.10.1038/nm.3733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012926250
323 https://doi.org/10.1038/nm.3733
324 rdf:type schema:CreativeWork
325 sg:pub.10.1038/s41375-018-0107-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101699329
326 https://doi.org/10.1038/s41375-018-0107-z
327 rdf:type schema:CreativeWork
328 sg:pub.10.1038/s41408-018-0109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105911435
329 https://doi.org/10.1038/s41408-018-0109-0
330 rdf:type schema:CreativeWork
331 sg:pub.10.1038/sj.leu.2404914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017755036
332 https://doi.org/10.1038/sj.leu.2404914
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1002/ajh.22069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052866315
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1002/ajh.24377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012678038
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1002/ajh.25230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105776245
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1002/humu.22932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053699161
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1016/j.ccr.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044759903
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1016/j.cell.2013.05.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011680451
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1056/nejmc091348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048899428
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1056/nejmc1012718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016633781
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1056/nejmoa1013343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027110305
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
353 rdf:type schema:CreativeWork
354 https://doi.org/10.1093/bioinformatics/btp394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032266264
355 rdf:type schema:CreativeWork
356 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
357 rdf:type schema:CreativeWork
358 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
359 rdf:type schema:CreativeWork
360 https://doi.org/10.1093/nar/gkv1222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034754276
361 rdf:type schema:CreativeWork
362 https://doi.org/10.1093/nar/gkw1121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041474443
363 rdf:type schema:CreativeWork
364 https://doi.org/10.1101/gr.092759.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020163602
365 rdf:type schema:CreativeWork
366 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
367 rdf:type schema:CreativeWork
368 https://doi.org/10.1101/gr.129684.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038753295
369 rdf:type schema:CreativeWork
370 https://doi.org/10.1126/science.1102160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033243130
371 rdf:type schema:CreativeWork
372 https://doi.org/10.1182/blood-2007-01-069542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033760105
373 rdf:type schema:CreativeWork
374 https://doi.org/10.1182/blood-2008-07-170449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011774727
375 rdf:type schema:CreativeWork
376 https://doi.org/10.1182/blood-2009-06-223982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045039321
377 rdf:type schema:CreativeWork
378 https://doi.org/10.1182/blood-2009-09-245837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053328676
379 rdf:type schema:CreativeWork
380 https://doi.org/10.1182/blood-2011-07-365320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018049297
381 rdf:type schema:CreativeWork
382 https://doi.org/10.1182/blood-2014-05-578435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025922370
383 rdf:type schema:CreativeWork
384 https://doi.org/10.1182/blood-2014-05-579136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010215758
385 rdf:type schema:CreativeWork
386 https://doi.org/10.1182/blood-2015-03-633404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017078762
387 rdf:type schema:CreativeWork
388 https://doi.org/10.1182/blood-2015-07-661835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009849017
389 rdf:type schema:CreativeWork
390 https://doi.org/10.1182/blood-2016-03-643544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049256958
391 rdf:type schema:CreativeWork
392 https://doi.org/10.1182/blood-2016-10-695940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064123401
393 rdf:type schema:CreativeWork
394 https://doi.org/10.1182/blood-2017-10-810028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101851256
395 rdf:type schema:CreativeWork
396 https://doi.org/10.1200/jco.2010.32.2446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003184844
397 rdf:type schema:CreativeWork
398 https://doi.org/10.1200/jco.2017.76.4886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099636539
399 rdf:type schema:CreativeWork
400 https://doi.org/10.1371/journal.pone.0094554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031526847
401 rdf:type schema:CreativeWork
402 https://doi.org/10.3324/haematol.2010.021808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041059847
403 rdf:type schema:CreativeWork
404 https://doi.org/10.3324/haematol.2014.113845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071145235
405 rdf:type schema:CreativeWork
406 https://doi.org/10.3324/haematol.2016.149765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032574618
407 rdf:type schema:CreativeWork
408 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
409 schema:name School of Public Health, The University of Hong Kong, Hong Kong, China
410 rdf:type schema:Organization
411 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
412 schema:name The Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
413 rdf:type schema:Organization
414 https://www.grid.ac/institutes/grid.415550.0 schema:alternateName Queen Mary Hospital
415 schema:name Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
416 Department of Medicine, The University of Hong Kong, Hong Kong, China
417 Department of Pathology, Queen Mary Hospital, Hong Kong, China
418 rdf:type schema:Organization
419 https://www.grid.ac/institutes/grid.418398.f schema:alternateName Hans Knöll Institute
420 schema:name Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
421 Systems Biology Group, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
422 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...