3D printing anatomical models of head bones View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-13

AUTHORS

M. Bartikian, A. Ferreira, A. Gonçalves-Ferreira, L. L. Neto

ABSTRACT

PURPOSE: In many medical schools, the study of Anatomy is becoming increasingly theoretical owing to the difficulty of having human body parts available, rather than offering the students the possibility of a more realistic and practical approach. We developed a project where we use a 3D printer to produce models of the human skull bones, with high quality and quantity to satisfy the needs for Anatomy classes and to be available for request to study at home. METHODS: We selected regular and well-shaped bones of the head upon which we based the 3D models. These bones were scanned using a 64-channel Computed Tomography (high-resolution volumetric acquisition) and the resulting images were then processed with a segmentation software to isolate and reconstruct the structures of interest. The final digital three-dimensional objects were converted into a printable file that the 3D printer could read. We used two filament extrusion type 3D printers, the Prusa i3 and the Zortrax M200. RESULTS: We have printed successfully several models of the skull bones, such as the temporal, occipital, and sphenoid. All the models have obtained good anatomical detail, thus demonstrating the practicality of this technology. Key aspects of the CT image post-processing are discussed. The production process is cost-effective and technically accessible. CONCLUSIONS: These results confirm the potential of 3D printing to create more complex models (e.g. regional, vascular, nervous system structures) that would allow a similar experience compared with a dissection. More... »

PAGES

1-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00276-018-2148-4

DOI

http://dx.doi.org/10.1007/s00276-018-2148-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110580104

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30547209


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hospital de Santa Maria", 
          "id": "https://www.grid.ac/institutes/grid.411265.5", 
          "name": [
            "Anatomy Department, Hospital de Santa Maria, Instituto de Anatomia, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartikian", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital de Santa Maria", 
          "id": "https://www.grid.ac/institutes/grid.411265.5", 
          "name": [
            "Anatomy Department, Hospital de Santa Maria, Instituto de Anatomia, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferreira", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital de Santa Maria", 
          "id": "https://www.grid.ac/institutes/grid.411265.5", 
          "name": [
            "Anatomy Department, Hospital de Santa Maria, Instituto de Anatomia, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal", 
            "Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gon\u00e7alves-Ferreira", 
        "givenName": "A.", 
        "id": "sg:person.0617141706.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617141706.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital de Santa Maria", 
          "id": "https://www.grid.ac/institutes/grid.411265.5", 
          "name": [
            "Anatomy Department, Hospital de Santa Maria, Instituto de Anatomia, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal", 
            "Neuroradiology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neto", 
        "givenName": "L. L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00276-016-1702-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009847120", 
          "https://doi.org/10.1007/s00276-016-1702-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00276-016-1702-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009847120", 
          "https://doi.org/10.1007/s00276-016-1702-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2048004016645467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012910551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2048004016645467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012910551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aanat.2007.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016436995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10401334.2014.883985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021199737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s41205-015-0002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034096729", 
          "https://doi.org/10.1186/s41205-015-0002-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s41205-015-0002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034096729", 
          "https://doi.org/10.1186/s41205-015-0002-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ase.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ase.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-015-9803-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039907071", 
          "https://doi.org/10.1007/s10278-015-9803-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ase.1475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046784227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000238012.49684.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047474463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000238012.49684.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047474463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ase.1573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053420552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4028725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062154036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12968/hmed.2009.70.9.43878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064811331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078517349", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.2015140320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079178736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21037/cdt.2017.01.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092306277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098937351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.31051/1852.8023.v9.n1.16769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106067927"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-13", 
    "datePublishedReg": "2018-12-13", 
    "description": "PURPOSE: In many medical schools, the study of Anatomy is becoming increasingly theoretical owing to the difficulty of having human body parts available, rather than offering the students the possibility of a more realistic and practical approach. We developed a project where we use a 3D printer to produce models of the human skull bones, with high quality and quantity to satisfy the needs for Anatomy classes and to be available for request to study at home.\nMETHODS: We selected regular and well-shaped bones of the head upon which we based the 3D models. These bones were scanned using a 64-channel Computed Tomography (high-resolution volumetric acquisition) and the resulting images were then processed with a segmentation software to isolate and reconstruct the structures of interest. The final digital three-dimensional objects were converted into a printable file that the 3D printer could read. We used two filament extrusion type 3D printers, the Prusa i3 and the Zortrax M200.\nRESULTS: We have printed successfully several models of the skull bones, such as the temporal, occipital, and sphenoid. All the models have obtained good anatomical detail, thus demonstrating the practicality of this technology. Key aspects of the CT image post-processing are discussed. The production process is cost-effective and technically accessible.\nCONCLUSIONS: These results confirm the potential of 3D printing to create more complex models (e.g. regional, vascular, nervous system structures) that would allow a similar experience compared with a dissection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00276-018-2148-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1096388", 
        "issn": [
          "0930-1038", 
          "1279-8517"
        ], 
        "name": "Surgical and Radiologic Anatomy", 
        "type": "Periodical"
      }
    ], 
    "name": "3D printing anatomical models of head bones", 
    "pagination": "1-5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04a21d1ce048fc0d8e2681e06439f106608fdca68d368b7b3a8cecc98a69022f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30547209"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8608029"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00276-018-2148-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110580104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00276-018-2148-4", 
      "https://app.dimensions.ai/details/publication/pub.1110580104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106259_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00276-018-2148-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00276-018-2148-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00276-018-2148-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00276-018-2148-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00276-018-2148-4'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      43 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00276-018-2148-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1881adcf2dc745d1878bf75d6e2146fc
4 schema:citation sg:pub.10.1007/s00276-016-1702-1
5 sg:pub.10.1007/s10278-015-9803-7
6 sg:pub.10.1186/s41205-015-0002-4
7 https://app.dimensions.ai/details/publication/pub.1078517349
8 https://doi.org/10.1002/ase.104
9 https://doi.org/10.1002/ase.1475
10 https://doi.org/10.1002/ase.1573
11 https://doi.org/10.1016/j.aanat.2007.10.001
12 https://doi.org/10.1080/10401334.2014.883985
13 https://doi.org/10.1097/01.rct.0000238012.49684.69
14 https://doi.org/10.1115/1.4028725
15 https://doi.org/10.1142/p351
16 https://doi.org/10.1148/rg.2015140320
17 https://doi.org/10.1177/2048004016645467
18 https://doi.org/10.12968/hmed.2009.70.9.43878
19 https://doi.org/10.21037/cdt.2017.01.12
20 https://doi.org/10.31051/1852.8023.v9.n1.16769
21 schema:datePublished 2018-12-13
22 schema:datePublishedReg 2018-12-13
23 schema:description PURPOSE: In many medical schools, the study of Anatomy is becoming increasingly theoretical owing to the difficulty of having human body parts available, rather than offering the students the possibility of a more realistic and practical approach. We developed a project where we use a 3D printer to produce models of the human skull bones, with high quality and quantity to satisfy the needs for Anatomy classes and to be available for request to study at home. METHODS: We selected regular and well-shaped bones of the head upon which we based the 3D models. These bones were scanned using a 64-channel Computed Tomography (high-resolution volumetric acquisition) and the resulting images were then processed with a segmentation software to isolate and reconstruct the structures of interest. The final digital three-dimensional objects were converted into a printable file that the 3D printer could read. We used two filament extrusion type 3D printers, the Prusa i3 and the Zortrax M200. RESULTS: We have printed successfully several models of the skull bones, such as the temporal, occipital, and sphenoid. All the models have obtained good anatomical detail, thus demonstrating the practicality of this technology. Key aspects of the CT image post-processing are discussed. The production process is cost-effective and technically accessible. CONCLUSIONS: These results confirm the potential of 3D printing to create more complex models (e.g. regional, vascular, nervous system structures) that would allow a similar experience compared with a dissection.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf sg:journal.1096388
28 schema:name 3D printing anatomical models of head bones
29 schema:pagination 1-5
30 schema:productId N527c366efa944c7282f7035ca9ec5830
31 N6743dff9319048439b77c35d517aa194
32 N723b470a023d476d949ac5c5914ca7a2
33 N8bdbd6453dc24fd2b54f94b1fcb7aa18
34 Nfeec9a642d4d4cbabf0396f122888d8e
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110580104
36 https://doi.org/10.1007/s00276-018-2148-4
37 schema:sdDatePublished 2019-04-11T08:30
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N7813ed0e5ef248e987605b2431ea7c72
40 schema:url https://link.springer.com/10.1007%2Fs00276-018-2148-4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1881adcf2dc745d1878bf75d6e2146fc rdf:first Nf6e9567e575d46d58642a8986eea97f4
45 rdf:rest N6ce225dc86384e0586abb3f2b54213d5
46 N527c366efa944c7282f7035ca9ec5830 schema:name dimensions_id
47 schema:value pub.1110580104
48 rdf:type schema:PropertyValue
49 N6269115b055e4329b299ec96cb5aaf6b schema:affiliation https://www.grid.ac/institutes/grid.411265.5
50 schema:familyName Neto
51 schema:givenName L. L.
52 rdf:type schema:Person
53 N6743dff9319048439b77c35d517aa194 schema:name nlm_unique_id
54 schema:value 8608029
55 rdf:type schema:PropertyValue
56 N6cb62de207ec43d2a9bac6d23422e046 rdf:first sg:person.0617141706.89
57 rdf:rest Ne205741d9b2b452da54fc8eac3c4d0dd
58 N6ce225dc86384e0586abb3f2b54213d5 rdf:first N77f0123f353b4336800d4129a5ca31a4
59 rdf:rest N6cb62de207ec43d2a9bac6d23422e046
60 N723b470a023d476d949ac5c5914ca7a2 schema:name pubmed_id
61 schema:value 30547209
62 rdf:type schema:PropertyValue
63 N77f0123f353b4336800d4129a5ca31a4 schema:affiliation https://www.grid.ac/institutes/grid.411265.5
64 schema:familyName Ferreira
65 schema:givenName A.
66 rdf:type schema:Person
67 N7813ed0e5ef248e987605b2431ea7c72 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N8bdbd6453dc24fd2b54f94b1fcb7aa18 schema:name doi
70 schema:value 10.1007/s00276-018-2148-4
71 rdf:type schema:PropertyValue
72 Ne205741d9b2b452da54fc8eac3c4d0dd rdf:first N6269115b055e4329b299ec96cb5aaf6b
73 rdf:rest rdf:nil
74 Nf6e9567e575d46d58642a8986eea97f4 schema:affiliation https://www.grid.ac/institutes/grid.411265.5
75 schema:familyName Bartikian
76 schema:givenName M.
77 rdf:type schema:Person
78 Nfeec9a642d4d4cbabf0396f122888d8e schema:name readcube_id
79 schema:value 04a21d1ce048fc0d8e2681e06439f106608fdca68d368b7b3a8cecc98a69022f
80 rdf:type schema:PropertyValue
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:journal.1096388 schema:issn 0930-1038
88 1279-8517
89 schema:name Surgical and Radiologic Anatomy
90 rdf:type schema:Periodical
91 sg:person.0617141706.89 schema:affiliation https://www.grid.ac/institutes/grid.411265.5
92 schema:familyName Gonçalves-Ferreira
93 schema:givenName A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617141706.89
95 rdf:type schema:Person
96 sg:pub.10.1007/s00276-016-1702-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009847120
97 https://doi.org/10.1007/s00276-016-1702-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10278-015-9803-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039907071
100 https://doi.org/10.1007/s10278-015-9803-7
101 rdf:type schema:CreativeWork
102 sg:pub.10.1186/s41205-015-0002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034096729
103 https://doi.org/10.1186/s41205-015-0002-4
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1078517349 schema:CreativeWork
106 https://doi.org/10.1002/ase.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379652
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/ase.1475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046784227
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/ase.1573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053420552
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.aanat.2007.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016436995
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/10401334.2014.883985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021199737
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1097/01.rct.0000238012.49684.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047474463
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1115/1.4028725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062154036
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1142/p351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098937351
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1148/rg.2015140320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079178736
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1177/2048004016645467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012910551
125 rdf:type schema:CreativeWork
126 https://doi.org/10.12968/hmed.2009.70.9.43878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064811331
127 rdf:type schema:CreativeWork
128 https://doi.org/10.21037/cdt.2017.01.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092306277
129 rdf:type schema:CreativeWork
130 https://doi.org/10.31051/1852.8023.v9.n1.16769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106067927
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.411265.5 schema:alternateName Hospital de Santa Maria
133 schema:name Anatomy Department, Hospital de Santa Maria, Instituto de Anatomia, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
134 Neuroradiology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
135 Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...