Analysis of Tumor Burden as a Biomarker for Patient Survival with Neuroendocrine Tumor Liver Metastases Undergoing Intra-Arterial Therapies: A Single-Center ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-08-08

AUTHORS

Milena Miszczuk, Julius Chapiro, Duc Do Minh, Johanna Maria Mijntje van Breugel, Susanne Smolka, Irvin Rexha, Bruno Tegel, MingDe Lin, Lynn Jeanette Savic, Kelvin Hong, Christos Georgiades, Nariman Nezami

ABSTRACT

PurposeTo assess the value of quantitative analysis of tumor burden on baseline MRI for prediction of survival in patients with neuroendocrine tumor liver metastases (NELM) undergoing intra-arterial therapies. Materials and MethodsThis retrospective single-center analysis included 122 patients with NELM who received conventional (n = 74) or drug-eluting beads, (n = 20) chemoembolization and radioembolization (n = 28) from 2000 to 2014. Overall tumor diameter (1D) and area (2D) of up to 3 largest liver lesions were measured on baseline arterially contrast enhanced MR images. Three-dimensional quantitative analysis was performed using the qEASL tool (IntelliSpace Portal Version 8, Philips) to calculate enhancing tumor burden (the ratio between enhancing tumor volume and total liver volume). Based on Q-statistics, patients were stratified into low tumor burden (TB) or high TB.ResultsThe survival curves were significantly separated between low TB and high TB groups for 1D (p < 0.001), 2D (p < 0.001) and enhancing TB (p = 0.008) measurements, with, respectively, 2.7, 2.6 and 2.2 times longer median overall survival (MOS) in the low TB group (p < 0.001, p < 0.001 and p = 0.008). Multivariate analysis showed that 1D, 2D, and enhancing TB were independent prognostic factors for MOS, with respective hazard ratios of 0.4 (95%CI: 0.2–0.6, p < 0.001), 0.4 (95%CI: 0.3–0.7, p < 0.001) and 0.5 (95%CI: 0.3–0.8, p = 0.003).ConclusionThe overall tumor diameter, overall tumor area, and enhancing tumor burden are strong prognostic factors of overall survival in patients with neuroendocrine tumor liver metastases undergoing intra-arterial therapies. More... »

PAGES

1494-1502

References to SciGraph publications

  • 2017-07-04. Intra-arterial therapy of neuroendocrine tumour liver metastases: comparing conventional TACE, drug-eluting beads TACE and yttrium-90 radioembolisation as treatment options using a propensity score analysis model in EUROPEAN RADIOLOGY
  • 2016-01-13. 3D Quantitative tumour burden analysis in patients with hepatocellular carcinoma before TACE: comparing single-lesion vs. multi-lesion imaging biomarkers as predictors of patient survival in EUROPEAN RADIOLOGY
  • 2015-01-31. Early survival prediction after intra-arterial therapies: a 3D quantitative MRI assessment of tumour response after TACE or radioembolization of colorectal cancer metastases to the liver in EUROPEAN RADIOLOGY
  • 2016-10-13. Embolotherapy for Neuroendocrine Tumor Liver Metastases: Prognostic Factors for Hepatic Progression-Free Survival and Overall Survival in CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY
  • 2020-03-02. Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with 177Lu-Dotatate: an analysis of the NETTER-1 study in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2019-03-15. Prognostic value of baseline volumetric multiparametric MR imaging in neuroendocrine liver metastases treated with transarterial chemoembolization in EUROPEAN RADIOLOGY
  • 2019-05-09. Semi-quantitative visual assessment of hepatic tumor burden can reliably predict survival in neuroendocrine liver metastases treated with transarterial chemoembolization in EUROPEAN RADIOLOGY
  • 2021-04-29. Role of 3D quantitative tumor analysis for predicting overall survival after conventional chemoembolization of intrahepatic cholangiocarcinoma in SCIENTIFIC REPORTS
  • 2015-05-23. Intraprocedural 3D Quantification of Lipiodol Deposition on Cone-Beam CT Predicts Tumor Response After Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma in CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY
  • 2015-05-21. Radiologic-pathologic analysis of quantitative 3D tumour enhancement on contrast-enhanced MR imaging: a study of ROI placement in EUROPEAN RADIOLOGY
  • 2021-06-01. Identifying enhancement-based staging markers on baseline MRI in patients with colorectal cancer liver metastases undergoing intra-arterial tumor therapy in EUROPEAN RADIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00270-022-03209-9

    DOI

    http://dx.doi.org/10.1007/s00270-022-03209-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150071334

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35941241


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chemoembolization, Therapeutic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuroendocrine Tumors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Burden", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miszczuk", 
            "givenName": "Milena", 
            "id": "sg:person.010077302370.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077302370.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chapiro", 
            "givenName": "Julius", 
            "id": "sg:person.01246300742.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246300742.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
                "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Do Minh", 
            "givenName": "Duc", 
            "id": "sg:person.015056551753.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015056551753.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Breugel", 
            "givenName": "Johanna Maria Mijntje", 
            "id": "sg:person.013451362037.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013451362037.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
                "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smolka", 
            "givenName": "Susanne", 
            "id": "sg:person.010734617675.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010734617675.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
                "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rexha", 
            "givenName": "Irvin", 
            "id": "sg:person.010674662770.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010674662770.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
                "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tegel", 
            "givenName": "Bruno", 
            "id": "sg:person.015652541547.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652541547.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "MingDe", 
            "id": "sg:person.013337552367.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013337552367.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Berlin Institute of Health at Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, 10117, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.484013.a", 
              "name": [
                "Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA", 
                "Department of Radiology, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin and Humboldt- Universit\u00e4t zu Berlin, 13353, Berlin, Germany", 
                "Berlin Institute of Health at Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, 10117, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Savic", 
            "givenName": "Lynn Jeanette", 
            "id": "sg:person.0666743466.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666743466.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hong", 
            "givenName": "Kelvin", 
            "id": "sg:person.0753300745.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753300745.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Georgiades", 
            "givenName": "Christos", 
            "id": "sg:person.01363511101.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363511101.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.516103.0", 
              "name": [
                "Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
                "Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 Greene St, 21201, Baltimore, MD, USA", 
                "Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nezami", 
            "givenName": "Nariman", 
            "id": "sg:person.0740520564.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740520564.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00330-015-4168-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012178755", 
              "https://doi.org/10.1007/s00330-015-4168-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-019-06246-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114012136", 
              "https://doi.org/10.1007/s00330-019-06246-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-020-04709-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125322253", 
              "https://doi.org/10.1007/s00259-020-04709-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-019-06100-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112771085", 
              "https://doi.org/10.1007/s00330-019-06100-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4856-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090346532", 
              "https://doi.org/10.1007/s00330-017-4856-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3812-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049647153", 
              "https://doi.org/10.1007/s00330-015-3812-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3595-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010879673", 
              "https://doi.org/10.1007/s00330-015-3595-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-021-88426-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137606911", 
              "https://doi.org/10.1038/s41598-021-88426-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00270-015-1129-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025281400", 
              "https://doi.org/10.1007/s00270-015-1129-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00270-016-1478-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008558049", 
              "https://doi.org/10.1007/s00270-016-1478-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-021-08058-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138507610", 
              "https://doi.org/10.1007/s00330-021-08058-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-08-08", 
        "datePublishedReg": "2022-08-08", 
        "description": "PurposeTo assess the value of quantitative analysis of tumor burden on baseline MRI for prediction of survival in patients with neuroendocrine tumor liver metastases (NELM) undergoing intra-arterial therapies.\nMaterials and MethodsThis retrospective single-center analysis included 122 patients with NELM who received conventional (n\u2009=\u200974) or drug-eluting beads, (n\u2009=\u200920) chemoembolization and radioembolization (n\u2009=\u200928) from 2000 to 2014. Overall tumor diameter (1D) and area (2D) of up to 3 largest liver lesions were measured on baseline arterially contrast enhanced MR images. Three-dimensional quantitative analysis was performed using the qEASL tool (IntelliSpace Portal Version 8, Philips) to calculate enhancing tumor burden (the ratio between enhancing tumor volume and total liver volume). Based on Q-statistics, patients were stratified into low tumor burden (TB) or high TB.ResultsThe survival curves were significantly separated between low TB and high TB groups for 1D (p\u2009<\u20090.001), 2D (p\u2009<\u20090.001) and enhancing TB (p\u2009=\u20090.008) measurements, with, respectively, 2.7, 2.6 and 2.2 times longer median overall survival (MOS) in the low TB group (p\u2009<\u20090.001, p\u2009<\u20090.001 and p\u2009=\u20090.008). Multivariate analysis showed that 1D, 2D, and enhancing TB were independent prognostic factors for MOS, with respective hazard ratios of 0.4 (95%CI: 0.2\u20130.6, p\u2009<\u20090.001), 0.4 (95%CI: 0.3\u20130.7, p\u2009<\u20090.001) and 0.5 (95%CI: 0.3\u20130.8, p\u2009=\u20090.003).ConclusionThe overall tumor diameter, overall tumor area, and enhancing tumor burden are strong prognostic factors of overall survival in patients with\u00a0neuroendocrine tumor liver metastases undergoing intra-arterial therapies.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00270-022-03209-9", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7137753", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2481540", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1091062", 
            "issn": [
              "0174-1551", 
              "1432-086X"
            ], 
            "name": "CardioVascular and Interventional Radiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "keywords": [
          "neuroendocrine tumor liver metastases", 
          "median overall survival", 
          "intra-arterial therapy", 
          "low tumor burden", 
          "tumor burden", 
          "overall survival", 
          "liver metastases", 
          "prognostic factors", 
          "tumor diameter", 
          "TB group", 
          "retrospective single-center analysis", 
          "longer median overall survival", 
          "single-center retrospective analysis", 
          "high TB group", 
          "low TB group", 
          "respective hazard ratios", 
          "single-center analysis", 
          "high tumor burden", 
          "independent prognostic factor", 
          "strong prognostic factor", 
          "drug-eluting beads", 
          "largest liver lesion", 
          "prediction of survival", 
          "hazard ratio", 
          "patient survival", 
          "baseline MRI", 
          "retrospective analysis", 
          "liver lesions", 
          "patients", 
          "survival curves", 
          "multivariate analysis", 
          "tumor area", 
          "therapy", 
          "overall tumor area", 
          "survival", 
          "burden", 
          "metastasis", 
          "Q statistic", 
          "three-dimensional quantitative analysis", 
          "MR images", 
          "chemoembolization", 
          "radioembolization", 
          "group", 
          "PurposeTo", 
          "lesions", 
          "MRI", 
          "baseline", 
          "biomarkers", 
          "factors", 
          "quantitative analysis", 
          "analysis", 
          "contrast", 
          "diameter", 
          "area", 
          "ratio", 
          "curves", 
          "tool", 
          "values", 
          "measurements", 
          "beads", 
          "materials", 
          "images", 
          "prediction"
        ], 
        "name": "Analysis of Tumor Burden as a Biomarker for Patient Survival with Neuroendocrine Tumor Liver Metastases Undergoing Intra-Arterial Therapies: A Single-Center Retrospective Analysis", 
        "pagination": "1494-1502", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150071334"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00270-022-03209-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35941241"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00270-022-03209-9", 
          "https://app.dimensions.ai/details/publication/pub.1150071334"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_930.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00270-022-03209-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00270-022-03209-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00270-022-03209-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00270-022-03209-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00270-022-03209-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    294 TRIPLES      21 PREDICATES      106 URIs      87 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00270-022-03209-9 schema:about N025a2583bce14028bf5b225d153da8aa
    2 N2da4514af74b4aeab1f48adb048023cd
    3 N3a056ad16b004deeaf54e615e7ccfa05
    4 N4c4b4c0dcfba44979dc4c16205b0459d
    5 N5192fbf70e6a463591f91ef82db8856b
    6 N8b5c3bb68cf3497fa6ecb1f491d2b091
    7 Nb33a7e0c527949a1b69989b778412d8a
    8 anzsrc-for:11
    9 anzsrc-for:1103
    10 schema:author N50228e59fbde4d179393f6a193a646c4
    11 schema:citation sg:pub.10.1007/s00259-020-04709-x
    12 sg:pub.10.1007/s00270-015-1129-9
    13 sg:pub.10.1007/s00270-016-1478-z
    14 sg:pub.10.1007/s00330-015-3595-5
    15 sg:pub.10.1007/s00330-015-3812-2
    16 sg:pub.10.1007/s00330-015-4168-3
    17 sg:pub.10.1007/s00330-017-4856-2
    18 sg:pub.10.1007/s00330-019-06100-3
    19 sg:pub.10.1007/s00330-019-06246-0
    20 sg:pub.10.1007/s00330-021-08058-7
    21 sg:pub.10.1038/s41598-021-88426-x
    22 schema:datePublished 2022-08-08
    23 schema:datePublishedReg 2022-08-08
    24 schema:description PurposeTo assess the value of quantitative analysis of tumor burden on baseline MRI for prediction of survival in patients with neuroendocrine tumor liver metastases (NELM) undergoing intra-arterial therapies. Materials and MethodsThis retrospective single-center analysis included 122 patients with NELM who received conventional (n = 74) or drug-eluting beads, (n = 20) chemoembolization and radioembolization (n = 28) from 2000 to 2014. Overall tumor diameter (1D) and area (2D) of up to 3 largest liver lesions were measured on baseline arterially contrast enhanced MR images. Three-dimensional quantitative analysis was performed using the qEASL tool (IntelliSpace Portal Version 8, Philips) to calculate enhancing tumor burden (the ratio between enhancing tumor volume and total liver volume). Based on Q-statistics, patients were stratified into low tumor burden (TB) or high TB.ResultsThe survival curves were significantly separated between low TB and high TB groups for 1D (p < 0.001), 2D (p < 0.001) and enhancing TB (p = 0.008) measurements, with, respectively, 2.7, 2.6 and 2.2 times longer median overall survival (MOS) in the low TB group (p < 0.001, p < 0.001 and p = 0.008). Multivariate analysis showed that 1D, 2D, and enhancing TB were independent prognostic factors for MOS, with respective hazard ratios of 0.4 (95%CI: 0.2–0.6, p < 0.001), 0.4 (95%CI: 0.3–0.7, p < 0.001) and 0.5 (95%CI: 0.3–0.8, p = 0.003).ConclusionThe overall tumor diameter, overall tumor area, and enhancing tumor burden are strong prognostic factors of overall survival in patients with neuroendocrine tumor liver metastases undergoing intra-arterial therapies.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N70efeded90cd44da9d321c881e88e8e4
    28 Nc04ea8ec991f414ba05642509caf21d5
    29 sg:journal.1091062
    30 schema:keywords MR images
    31 MRI
    32 PurposeTo
    33 Q statistic
    34 TB group
    35 analysis
    36 area
    37 baseline
    38 baseline MRI
    39 beads
    40 biomarkers
    41 burden
    42 chemoembolization
    43 contrast
    44 curves
    45 diameter
    46 drug-eluting beads
    47 factors
    48 group
    49 hazard ratio
    50 high TB group
    51 high tumor burden
    52 images
    53 independent prognostic factor
    54 intra-arterial therapy
    55 largest liver lesion
    56 lesions
    57 liver lesions
    58 liver metastases
    59 longer median overall survival
    60 low TB group
    61 low tumor burden
    62 materials
    63 measurements
    64 median overall survival
    65 metastasis
    66 multivariate analysis
    67 neuroendocrine tumor liver metastases
    68 overall survival
    69 overall tumor area
    70 patient survival
    71 patients
    72 prediction
    73 prediction of survival
    74 prognostic factors
    75 quantitative analysis
    76 radioembolization
    77 ratio
    78 respective hazard ratios
    79 retrospective analysis
    80 retrospective single-center analysis
    81 single-center analysis
    82 single-center retrospective analysis
    83 strong prognostic factor
    84 survival
    85 survival curves
    86 therapy
    87 three-dimensional quantitative analysis
    88 tool
    89 tumor area
    90 tumor burden
    91 tumor diameter
    92 values
    93 schema:name Analysis of Tumor Burden as a Biomarker for Patient Survival with Neuroendocrine Tumor Liver Metastases Undergoing Intra-Arterial Therapies: A Single-Center Retrospective Analysis
    94 schema:pagination 1494-1502
    95 schema:productId N183b4e2d6ef945e7bf284f8ebc2569f2
    96 N86e7b38737684afa89a9728621baf04a
    97 Nb41f9231f77240099245b3b69e591e49
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150071334
    99 https://doi.org/10.1007/s00270-022-03209-9
    100 schema:sdDatePublished 2022-12-01T06:44
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher Nb2538bf6f82244f18fbaf69829787e59
    103 schema:url https://doi.org/10.1007/s00270-022-03209-9
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N025a2583bce14028bf5b225d153da8aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Biomarkers
    109 rdf:type schema:DefinedTerm
    110 N02df46b3670c457a84485e5fcfc38567 rdf:first sg:person.0666743466.23
    111 rdf:rest Ndc24a594efa34e3f8abbd2c2d8138081
    112 N094009bdca944571b7e863f23f55d70e rdf:first sg:person.015056551753.11
    113 rdf:rest N84950896e1fa4132b30d6088d8d5ed8b
    114 N183b4e2d6ef945e7bf284f8ebc2569f2 schema:name dimensions_id
    115 schema:value pub.1150071334
    116 rdf:type schema:PropertyValue
    117 N253bc039c5e94c54bbe9518f9b9130b8 rdf:first sg:person.01246300742.15
    118 rdf:rest N094009bdca944571b7e863f23f55d70e
    119 N2da4514af74b4aeab1f48adb048023cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Tumor Burden
    121 rdf:type schema:DefinedTerm
    122 N3a056ad16b004deeaf54e615e7ccfa05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Humans
    124 rdf:type schema:DefinedTerm
    125 N4c4b4c0dcfba44979dc4c16205b0459d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Neuroendocrine Tumors
    127 rdf:type schema:DefinedTerm
    128 N50228e59fbde4d179393f6a193a646c4 rdf:first sg:person.010077302370.13
    129 rdf:rest N253bc039c5e94c54bbe9518f9b9130b8
    130 N5192fbf70e6a463591f91ef82db8856b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Retrospective Studies
    132 rdf:type schema:DefinedTerm
    133 N611d0d6bf8e240c79f75d3f0a09bfca2 rdf:first sg:person.010734617675.88
    134 rdf:rest Nc8ae98bbf17b441fb6a896ab91f9a0bb
    135 N70efeded90cd44da9d321c881e88e8e4 schema:volumeNumber 45
    136 rdf:type schema:PublicationVolume
    137 N84950896e1fa4132b30d6088d8d5ed8b rdf:first sg:person.013451362037.76
    138 rdf:rest N611d0d6bf8e240c79f75d3f0a09bfca2
    139 N86e7b38737684afa89a9728621baf04a schema:name doi
    140 schema:value 10.1007/s00270-022-03209-9
    141 rdf:type schema:PropertyValue
    142 N8b5c3bb68cf3497fa6ecb1f491d2b091 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Chemoembolization, Therapeutic
    144 rdf:type schema:DefinedTerm
    145 N9fdf08cfedfc4fbabccabd81d1ae3bce rdf:first sg:person.015652541547.02
    146 rdf:rest Nbca329d361a6416b90f5130d800ace9b
    147 Nb2538bf6f82244f18fbaf69829787e59 schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 Nb33a7e0c527949a1b69989b778412d8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Liver Neoplasms
    151 rdf:type schema:DefinedTerm
    152 Nb41f9231f77240099245b3b69e591e49 schema:name pubmed_id
    153 schema:value 35941241
    154 rdf:type schema:PropertyValue
    155 Nbca329d361a6416b90f5130d800ace9b rdf:first sg:person.013337552367.01
    156 rdf:rest N02df46b3670c457a84485e5fcfc38567
    157 Nbd993c6dee5547f5acea612a96ad6e64 rdf:first sg:person.01363511101.27
    158 rdf:rest Nc3dd8b018ceb4394b71cc9214c156eb5
    159 Nc04ea8ec991f414ba05642509caf21d5 schema:issueNumber 10
    160 rdf:type schema:PublicationIssue
    161 Nc3dd8b018ceb4394b71cc9214c156eb5 rdf:first sg:person.0740520564.76
    162 rdf:rest rdf:nil
    163 Nc8ae98bbf17b441fb6a896ab91f9a0bb rdf:first sg:person.010674662770.15
    164 rdf:rest N9fdf08cfedfc4fbabccabd81d1ae3bce
    165 Ndc24a594efa34e3f8abbd2c2d8138081 rdf:first sg:person.0753300745.50
    166 rdf:rest Nbd993c6dee5547f5acea612a96ad6e64
    167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Medical and Health Sciences
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Clinical Sciences
    172 rdf:type schema:DefinedTerm
    173 sg:grant.2481540 http://pending.schema.org/fundedItem sg:pub.10.1007/s00270-022-03209-9
    174 rdf:type schema:MonetaryGrant
    175 sg:grant.7137753 http://pending.schema.org/fundedItem sg:pub.10.1007/s00270-022-03209-9
    176 rdf:type schema:MonetaryGrant
    177 sg:journal.1091062 schema:issn 0174-1551
    178 1432-086X
    179 schema:name CardioVascular and Interventional Radiology
    180 schema:publisher Springer Nature
    181 rdf:type schema:Periodical
    182 sg:person.010077302370.13 schema:affiliation grid-institutes:grid.47100.32
    183 schema:familyName Miszczuk
    184 schema:givenName Milena
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077302370.13
    186 rdf:type schema:Person
    187 sg:person.010674662770.15 schema:affiliation grid-institutes:grid.6363.0
    188 schema:familyName Rexha
    189 schema:givenName Irvin
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010674662770.15
    191 rdf:type schema:Person
    192 sg:person.010734617675.88 schema:affiliation grid-institutes:grid.6363.0
    193 schema:familyName Smolka
    194 schema:givenName Susanne
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010734617675.88
    196 rdf:type schema:Person
    197 sg:person.01246300742.15 schema:affiliation grid-institutes:grid.47100.32
    198 schema:familyName Chapiro
    199 schema:givenName Julius
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246300742.15
    201 rdf:type schema:Person
    202 sg:person.013337552367.01 schema:affiliation grid-institutes:grid.47100.32
    203 schema:familyName Lin
    204 schema:givenName MingDe
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013337552367.01
    206 rdf:type schema:Person
    207 sg:person.013451362037.76 schema:affiliation grid-institutes:grid.47100.32
    208 schema:familyName van Breugel
    209 schema:givenName Johanna Maria Mijntje
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013451362037.76
    211 rdf:type schema:Person
    212 sg:person.01363511101.27 schema:affiliation grid-institutes:grid.21107.35
    213 schema:familyName Georgiades
    214 schema:givenName Christos
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363511101.27
    216 rdf:type schema:Person
    217 sg:person.015056551753.11 schema:affiliation grid-institutes:grid.6363.0
    218 schema:familyName Do Minh
    219 schema:givenName Duc
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015056551753.11
    221 rdf:type schema:Person
    222 sg:person.015652541547.02 schema:affiliation grid-institutes:grid.6363.0
    223 schema:familyName Tegel
    224 schema:givenName Bruno
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652541547.02
    226 rdf:type schema:Person
    227 sg:person.0666743466.23 schema:affiliation grid-institutes:grid.484013.a
    228 schema:familyName Savic
    229 schema:givenName Lynn Jeanette
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666743466.23
    231 rdf:type schema:Person
    232 sg:person.0740520564.76 schema:affiliation grid-institutes:grid.516103.0
    233 schema:familyName Nezami
    234 schema:givenName Nariman
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740520564.76
    236 rdf:type schema:Person
    237 sg:person.0753300745.50 schema:affiliation grid-institutes:grid.21107.35
    238 schema:familyName Hong
    239 schema:givenName Kelvin
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753300745.50
    241 rdf:type schema:Person
    242 sg:pub.10.1007/s00259-020-04709-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1125322253
    243 https://doi.org/10.1007/s00259-020-04709-x
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00270-015-1129-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025281400
    246 https://doi.org/10.1007/s00270-015-1129-9
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s00270-016-1478-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008558049
    249 https://doi.org/10.1007/s00270-016-1478-z
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00330-015-3595-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010879673
    252 https://doi.org/10.1007/s00330-015-3595-5
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s00330-015-3812-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049647153
    255 https://doi.org/10.1007/s00330-015-3812-2
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s00330-015-4168-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012178755
    258 https://doi.org/10.1007/s00330-015-4168-3
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s00330-017-4856-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090346532
    261 https://doi.org/10.1007/s00330-017-4856-2
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s00330-019-06100-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112771085
    264 https://doi.org/10.1007/s00330-019-06100-3
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s00330-019-06246-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114012136
    267 https://doi.org/10.1007/s00330-019-06246-0
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s00330-021-08058-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138507610
    270 https://doi.org/10.1007/s00330-021-08058-7
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/s41598-021-88426-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1137606911
    273 https://doi.org/10.1038/s41598-021-88426-x
    274 rdf:type schema:CreativeWork
    275 grid-institutes:grid.21107.35 schema:alternateName Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
    276 schema:name Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
    277 rdf:type schema:Organization
    278 grid-institutes:grid.47100.32 schema:alternateName Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
    279 schema:name Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
    280 rdf:type schema:Organization
    281 grid-institutes:grid.484013.a schema:alternateName Berlin Institute of Health at Charité – Universitätsmedizin Berlin, 10117, Berlin, Germany
    282 schema:name Berlin Institute of Health at Charité – Universitätsmedizin Berlin, 10117, Berlin, Germany
    283 Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
    284 Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, 13353, Berlin, Germany
    285 rdf:type schema:Organization
    286 grid-institutes:grid.516103.0 schema:alternateName Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
    287 schema:name Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 Greene St, 21201, Baltimore, MD, USA
    288 Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
    289 Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
    290 rdf:type schema:Organization
    291 grid-institutes:grid.6363.0 schema:alternateName Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, 13353, Berlin, Germany
    292 schema:name Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
    293 Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, 13353, Berlin, Germany
    294 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...