Predicting Success in Percutaneous Transhepatic Biliary Drainage View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Ankaj Khosla, Yin Xi, Seth Toomay

ABSTRACT

PURPOSE: To develop a model to predict successful bilirubin decrease following percutaneous biliary drain placement. METHODS: A total of 257 patients who were identified having undergone percutaneous transhepatic biliary drain placement (PTBD) at our institution between 2002 and 2013 had their medical records and imaging reviewed. Of those, 190 of these patients met criteria and were used in the analysis. A regression model was performed on logarithm-transformed collected variables to predict post-drainage logarithmic transformed total bilirubin levels. A stepwise variable selection method based on Schwarz Bayesian Information Criterion was used to select the most closely associated variables. The model was validated with a Monte Carlo simulation. A short program was developed to calculate the point estimate using the model developed and compared to actual values. RESULTS: The variables that best predicted bilirubin reduction were initial Tbl (PrTbl), INR and ALT. The selected model had a root mean squared error of 0.8. The model had a negative predictive value (PoTbl is below 2 mg/dL) of 83%. CONCLUSIONS: PTBD may not achieve decreasing bilirubin in patients with a malignant obstruction. This is an initial model that can help determine which patients may not benefit from PTBD placement. With more patients, the model's validity can be increased and provide useful clinical determinant to aide patient care. More... »

PAGES

1586-1592

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00270-017-1679-0

DOI

http://dx.doi.org/10.1007/s00270-017-1679-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085403470

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28500461


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biliary Tract Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bilirubin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drainage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Selection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416214.4", 
          "name": [
            "Department of Radiology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., 75390, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khosla", 
        "givenName": "Ankaj", 
        "id": "sg:person.01336176067.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336176067.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416214.4", 
          "name": [
            "Department of Radiology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., 75390, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xi", 
        "givenName": "Yin", 
        "id": "sg:person.01047574245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047574245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416214.4", 
          "name": [
            "Department of Radiology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., 75390, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toomay", 
        "givenName": "Seth", 
        "id": "sg:person.01360510073.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360510073.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s40537-014-0007-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003948507", 
          "https://doi.org/10.1186/s40537-014-0007-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40537-014-0007-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003948507", 
          "https://doi.org/10.1186/s40537-014-0007-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/gast.2002.36061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004364635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(97)00340-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006050342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(97)00340-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006050342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.35.4.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008142664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.23454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008933981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/coc.0b013e3182a5341a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014504104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/coc.0b013e3182a5341a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014504104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-015-0580-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016834091", 
          "https://doi.org/10.1007/s00261-015-0580-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1477-2574.2009.00090.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032468782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-010-1045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034040312", 
          "https://doi.org/10.1245/s10434-010-1045-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-010-1045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034040312", 
          "https://doi.org/10.1245/s10434-010-1045-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-007-0796-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044746035", 
          "https://doi.org/10.1007/s00330-007-0796-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvir.2011.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045250701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvir.2011.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045250701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.15.5206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071361969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2000.18.14.2780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074667571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077262173", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2012.110703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078531037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2012.110703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078531037"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "PURPOSE: To develop a model to predict successful bilirubin decrease following percutaneous biliary drain placement.\nMETHODS: A total of 257 patients who were identified having undergone percutaneous transhepatic biliary drain placement (PTBD) at our institution between 2002 and 2013 had their medical records and imaging reviewed. Of those, 190 of these patients met criteria and were used in the analysis. A regression model was performed on logarithm-transformed collected variables to predict post-drainage logarithmic transformed total bilirubin levels. A stepwise variable selection method based on Schwarz Bayesian Information Criterion was used to select the most closely associated variables. The model was validated with a Monte Carlo simulation. A short program was developed to calculate the point estimate using the model developed and compared to actual values.\nRESULTS: The variables that best predicted bilirubin reduction were initial Tbl (PrTbl), INR and ALT. The selected model had a root mean squared error of 0.8. The model had a negative predictive value (PoTbl is below 2\u00a0mg/dL) of 83%.\nCONCLUSIONS: PTBD may not achieve decreasing bilirubin in patients with a malignant obstruction. This is an initial model that can help determine which patients may not benefit from PTBD placement. With more patients, the model's validity can be increased and provide useful clinical determinant to aide patient care.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00270-017-1679-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1091062", 
        "issn": [
          "0174-1551", 
          "1432-086X"
        ], 
        "name": "CardioVascular and Interventional Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Predicting Success in Percutaneous Transhepatic Biliary Drainage", 
    "pagination": "1586-1592", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "abc805826d5aef0c7d899f4735b568a8ee4ceef9394c80968476efa6ed018596"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28500461"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8003538"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00270-017-1679-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085403470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00270-017-1679-0", 
      "https://app.dimensions.ai/details/publication/pub.1085403470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00270-017-1679-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00270-017-1679-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00270-017-1679-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00270-017-1679-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00270-017-1679-0'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      56 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00270-017-1679-0 schema:about N0083ca1bddbe4e21b60d78cf3eac5736
2 N0575f7afc2554f5b952c1f121f96d8cc
3 N2c6a770cb80748a2ad46627f49bfddcd
4 N3944e78ed7694f7282171c8b5f496179
5 N5de779cb9ef64f6a80cd9d30e045e2dd
6 N690afff10825405888b4c1aab776b8dd
7 N6e66043bcfd64cd78d48b4e9d176f873
8 N8b9be9636cd347a9970c94f2f38b666d
9 N8ed28a664f184a08ba0e84a0b074d7ce
10 Nbe14a29b1fa54385a2045b05be01c553
11 Nc3df22e516c248619e610f981f816560
12 Ncc6183fbbe534a4eb94c5b3449892c7d
13 anzsrc-for:01
14 anzsrc-for:0104
15 schema:author N5e89746a562e467f9f920161cbdbae9d
16 schema:citation sg:pub.10.1007/s00261-015-0580-z
17 sg:pub.10.1007/s00330-007-0796-6
18 sg:pub.10.1186/s40537-014-0007-7
19 sg:pub.10.1245/s10434-010-1045-9
20 https://app.dimensions.ai/details/publication/pub.1077262173
21 https://doi.org/10.1002/cncr.23454
22 https://doi.org/10.1016/j.jvir.2011.09.022
23 https://doi.org/10.1016/s0959-8049(97)00340-7
24 https://doi.org/10.1053/gast.2002.36061
25 https://doi.org/10.1097/coc.0b013e3182a5341a
26 https://doi.org/10.1111/j.1477-2574.2009.00090.x
27 https://doi.org/10.1136/gut.35.4.467
28 https://doi.org/10.1200/jco.2000.18.14.2780
29 https://doi.org/10.1258/ar.2012.110703
30 https://doi.org/10.3748/wjg.15.5206
31 schema:datePublished 2017-10
32 schema:datePublishedReg 2017-10-01
33 schema:description PURPOSE: To develop a model to predict successful bilirubin decrease following percutaneous biliary drain placement. METHODS: A total of 257 patients who were identified having undergone percutaneous transhepatic biliary drain placement (PTBD) at our institution between 2002 and 2013 had their medical records and imaging reviewed. Of those, 190 of these patients met criteria and were used in the analysis. A regression model was performed on logarithm-transformed collected variables to predict post-drainage logarithmic transformed total bilirubin levels. A stepwise variable selection method based on Schwarz Bayesian Information Criterion was used to select the most closely associated variables. The model was validated with a Monte Carlo simulation. A short program was developed to calculate the point estimate using the model developed and compared to actual values. RESULTS: The variables that best predicted bilirubin reduction were initial Tbl (PrTbl), INR and ALT. The selected model had a root mean squared error of 0.8. The model had a negative predictive value (PoTbl is below 2 mg/dL) of 83%. CONCLUSIONS: PTBD may not achieve decreasing bilirubin in patients with a malignant obstruction. This is an initial model that can help determine which patients may not benefit from PTBD placement. With more patients, the model's validity can be increased and provide useful clinical determinant to aide patient care.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N3e6306a5132d43ffa537f6369cd77319
38 N9d0a219cb8d54062887e455e92bde5a1
39 sg:journal.1091062
40 schema:name Predicting Success in Percutaneous Transhepatic Biliary Drainage
41 schema:pagination 1586-1592
42 schema:productId N1b351d0b660a4a9fa7e3103ffd73bc14
43 N499f6fb48dba457ca056e0750f5a2dea
44 N6d4c489279aa42d0b9c93a5cf453b249
45 N7801d272a89541d9b247c768a2e6e176
46 Na31e853dc56c4774a44fabff9abbd950
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085403470
48 https://doi.org/10.1007/s00270-017-1679-0
49 schema:sdDatePublished 2019-04-11T10:27
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N77b71df1e01f4f15b0751ab92841c75c
52 schema:url https://link.springer.com/10.1007%2Fs00270-017-1679-0
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0083ca1bddbe4e21b60d78cf3eac5736 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Male
58 rdf:type schema:DefinedTerm
59 N0575f7afc2554f5b952c1f121f96d8cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Middle Aged
61 rdf:type schema:DefinedTerm
62 N1b351d0b660a4a9fa7e3103ffd73bc14 schema:name nlm_unique_id
63 schema:value 8003538
64 rdf:type schema:PropertyValue
65 N2c6a770cb80748a2ad46627f49bfddcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Bilirubin
67 rdf:type schema:DefinedTerm
68 N3944e78ed7694f7282171c8b5f496179 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Bayes Theorem
70 rdf:type schema:DefinedTerm
71 N3e6306a5132d43ffa537f6369cd77319 schema:issueNumber 10
72 rdf:type schema:PublicationIssue
73 N499f6fb48dba457ca056e0750f5a2dea schema:name pubmed_id
74 schema:value 28500461
75 rdf:type schema:PropertyValue
76 N5de779cb9ef64f6a80cd9d30e045e2dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Female
78 rdf:type schema:DefinedTerm
79 N5e89746a562e467f9f920161cbdbae9d rdf:first sg:person.01336176067.48
80 rdf:rest N714b93580571498991ad77acc6cb2487
81 N690afff10825405888b4c1aab776b8dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Drainage
83 rdf:type schema:DefinedTerm
84 N6d4c489279aa42d0b9c93a5cf453b249 schema:name dimensions_id
85 schema:value pub.1085403470
86 rdf:type schema:PropertyValue
87 N6e66043bcfd64cd78d48b4e9d176f873 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Biliary Tract Diseases
89 rdf:type schema:DefinedTerm
90 N714b93580571498991ad77acc6cb2487 rdf:first sg:person.01047574245.80
91 rdf:rest Nabf7405918bd44f9af07b7291d63505d
92 N77b71df1e01f4f15b0751ab92841c75c schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N7801d272a89541d9b247c768a2e6e176 schema:name readcube_id
95 schema:value abc805826d5aef0c7d899f4735b568a8ee4ceef9394c80968476efa6ed018596
96 rdf:type schema:PropertyValue
97 N8b9be9636cd347a9970c94f2f38b666d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 N8ed28a664f184a08ba0e84a0b074d7ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Patient Selection
102 rdf:type schema:DefinedTerm
103 N9d0a219cb8d54062887e455e92bde5a1 schema:volumeNumber 40
104 rdf:type schema:PublicationVolume
105 Na31e853dc56c4774a44fabff9abbd950 schema:name doi
106 schema:value 10.1007/s00270-017-1679-0
107 rdf:type schema:PropertyValue
108 Nabf7405918bd44f9af07b7291d63505d rdf:first sg:person.01360510073.44
109 rdf:rest rdf:nil
110 Nbe14a29b1fa54385a2045b05be01c553 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Monte Carlo Method
112 rdf:type schema:DefinedTerm
113 Nc3df22e516c248619e610f981f816560 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Retrospective Studies
115 rdf:type schema:DefinedTerm
116 Ncc6183fbbe534a4eb94c5b3449892c7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Treatment Outcome
118 rdf:type schema:DefinedTerm
119 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
120 schema:name Mathematical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
123 schema:name Statistics
124 rdf:type schema:DefinedTerm
125 sg:journal.1091062 schema:issn 0174-1551
126 1432-086X
127 schema:name CardioVascular and Interventional Radiology
128 rdf:type schema:Periodical
129 sg:person.01047574245.80 schema:affiliation https://www.grid.ac/institutes/grid.416214.4
130 schema:familyName Xi
131 schema:givenName Yin
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047574245.80
133 rdf:type schema:Person
134 sg:person.01336176067.48 schema:affiliation https://www.grid.ac/institutes/grid.416214.4
135 schema:familyName Khosla
136 schema:givenName Ankaj
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336176067.48
138 rdf:type schema:Person
139 sg:person.01360510073.44 schema:affiliation https://www.grid.ac/institutes/grid.416214.4
140 schema:familyName Toomay
141 schema:givenName Seth
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360510073.44
143 rdf:type schema:Person
144 sg:pub.10.1007/s00261-015-0580-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016834091
145 https://doi.org/10.1007/s00261-015-0580-z
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00330-007-0796-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044746035
148 https://doi.org/10.1007/s00330-007-0796-6
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/s40537-014-0007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003948507
151 https://doi.org/10.1186/s40537-014-0007-7
152 rdf:type schema:CreativeWork
153 sg:pub.10.1245/s10434-010-1045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034040312
154 https://doi.org/10.1245/s10434-010-1045-9
155 rdf:type schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1077262173 schema:CreativeWork
157 https://doi.org/10.1002/cncr.23454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008933981
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jvir.2011.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045250701
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0959-8049(97)00340-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006050342
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1053/gast.2002.36061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004364635
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1097/coc.0b013e3182a5341a schema:sameAs https://app.dimensions.ai/details/publication/pub.1014504104
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1111/j.1477-2574.2009.00090.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032468782
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1136/gut.35.4.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008142664
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1200/jco.2000.18.14.2780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074667571
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1258/ar.2012.110703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078531037
174 rdf:type schema:CreativeWork
175 https://doi.org/10.3748/wjg.15.5206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071361969
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.416214.4 schema:alternateName Southwestern Medical Center
178 schema:name Department of Radiology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., 75390, Dallas, TX, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...