Ultrasound-Guided Aspiration Biopsy for Detection of Nonpalpable Axillary Node Metastases in Breast Cancer Patients: New Diagnostic Method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-03

AUTHORS

Jorien Bonnema, Albert N. van Geel, Bart van Ooijen, Sybrand P.M. Mali, Swanny L. Tjiam, Sonja C. Henzen-Logmans, Paul I.M. Schmitz, Theo Wiggers

ABSTRACT

This study was designed to evaluate the accuracy of ultrasonography alone and in combination with fine-needle aspiration biopsy (FNAB) for detection of axillary metastases of nonpalpable lymph nodes in breast cancer patients. Ultrasonography was carried out in 150 axillas of 148 patients (mean age 57 years, range 30-80 years); and in 93 axillas lymph nodes were detected. Nodes were described according to their dimension and echo patterns and were compared with histopathologic results. FNAB was carried out in 81 axillas (122 nodes). The sensitivity of ultrasonography was highest (87%) when size (length >5 mm) was used as criterion for malignancy, but the specificity was rather low (56%). When nodes with a malignant pattern (echo-poor or inhomogeneous) were visualized, specificity was 95%. Ultrasound-guided FNAB had a sensitivity of 80% and a specificity of 100% and detected metastases in 63% of node-positive patients. It is concluded that FNAB is an easy, reliable, inexpensive method for identifying patients with positive nodes. In the case of negative findings, other diagnostic procedures to exclude lymph node metastases, such as sentinel node mapping, could be performed. More... »

PAGES

270-274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002689900227

DOI

http://dx.doi.org/10.1007/s002689900227

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011407700

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9015169


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Axilla", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy, Needle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Surgical Oncology, University Hospital/Daniel den Hoed Cancer Center, Zuider Hospital, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnema", 
        "givenName": "Jorien", 
        "id": "sg:person.01343173600.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343173600.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgical Oncology, University Hospital/Daniel den Hoed Cancer Center, Zuider Hospital, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Geel", 
        "givenName": "Albert N.", 
        "id": "sg:person.012703454224.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012703454224.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgical Oncology, University Hospital/Daniel den Hoed Cancer Center, Zuider Hospital, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Ooijen", 
        "givenName": "Bart", 
        "id": "sg:person.0613165546.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613165546.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mali", 
        "givenName": "Sybrand P.M.", 
        "id": "sg:person.01022136434.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022136434.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tjiam", 
        "givenName": "Swanny L.", 
        "id": "sg:person.01070251634.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070251634.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henzen-Logmans", 
        "givenName": "Sonja C.", 
        "id": "sg:person.01065303501.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065303501.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Statistics, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmitz", 
        "givenName": "Paul I.M.", 
        "id": "sg:person.01347341335.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347341335.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgical Oncology, University Hospital/Daniel den Hoed Cancer Center, Zuider Hospital, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiggers", 
        "givenName": "Theo", 
        "id": "sg:person.01044324702.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044324702.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997-03", 
    "datePublishedReg": "1997-03-01", 
    "description": "This study was designed to evaluate the accuracy of ultrasonography alone and in combination with fine-needle aspiration biopsy (FNAB) for detection of axillary metastases of nonpalpable lymph nodes in breast cancer patients. Ultrasonography was carried out in 150 axillas of 148 patients (mean age 57 years, range 30-80 years); and in 93 axillas lymph nodes were detected. Nodes were described according to their dimension and echo patterns and were compared with histopathologic results. FNAB was carried out in 81 axillas (122 nodes). The sensitivity of ultrasonography was highest (87%) when size (length >5 mm) was used as criterion for malignancy, but the specificity was rather low (56%). When nodes with a malignant pattern (echo-poor or inhomogeneous) were visualized, specificity was 95%. Ultrasound-guided FNAB had a sensitivity of 80% and a specificity of 100% and detected metastases in 63% of node-positive patients. It is concluded that FNAB is an easy, reliable, inexpensive method for identifying patients with positive nodes. In the case of negative findings, other diagnostic procedures to exclude lymph node metastases, such as sentinel node mapping, could be performed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002689900227", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1086446", 
        "issn": [
          "0364-2313", 
          "1432-2323"
        ], 
        "name": "World Journal of Surgery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Ultrasound-Guided Aspiration Biopsy for Detection of Nonpalpable Axillary Node Metastases in Breast Cancer Patients: New Diagnostic Method", 
    "pagination": "270-274", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3659a9f2f113193d9667bcef1cbab05fa3ef559f0d3ce05670d1400a04a5a6f9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9015169"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704052"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002689900227"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011407700"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002689900227", 
      "https://app.dimensions.ai/details/publication/pub.1011407700"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s002689900227"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002689900227'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002689900227'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002689900227'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002689900227'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      20 PREDICATES      40 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002689900227 schema:about N093b18b0e2784b51839b8997a626ab39
2 N11273aa8d03c46298b8825be407e235e
3 N206d79cf09934c7f90c99cdf45774073
4 N37141f07eb1849f3a6888628c3227ebb
5 N5c130039287c4f16b650ea8eec594998
6 N62a98cc581104e0399be258a0b52995d
7 N74321bba3d494930a1be757f8b50df13
8 N7d082250cdf84f77a63e5f71ea3c66e6
9 Nb059e22eade148f5be3b88e6a229726a
10 Nbf4fea469eee470aaf8147caff35cbdd
11 Nc5ed1d49a6e7492f83a2cdb1ceb45259
12 anzsrc-for:11
13 anzsrc-for:1112
14 schema:author N064a6df4310c45f195471de0af9515b5
15 schema:datePublished 1997-03
16 schema:datePublishedReg 1997-03-01
17 schema:description This study was designed to evaluate the accuracy of ultrasonography alone and in combination with fine-needle aspiration biopsy (FNAB) for detection of axillary metastases of nonpalpable lymph nodes in breast cancer patients. Ultrasonography was carried out in 150 axillas of 148 patients (mean age 57 years, range 30-80 years); and in 93 axillas lymph nodes were detected. Nodes were described according to their dimension and echo patterns and were compared with histopathologic results. FNAB was carried out in 81 axillas (122 nodes). The sensitivity of ultrasonography was highest (87%) when size (length >5 mm) was used as criterion for malignancy, but the specificity was rather low (56%). When nodes with a malignant pattern (echo-poor or inhomogeneous) were visualized, specificity was 95%. Ultrasound-guided FNAB had a sensitivity of 80% and a specificity of 100% and detected metastases in 63% of node-positive patients. It is concluded that FNAB is an easy, reliable, inexpensive method for identifying patients with positive nodes. In the case of negative findings, other diagnostic procedures to exclude lymph node metastases, such as sentinel node mapping, could be performed.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N2968eb661a4a4701bee2dfef6b223f45
22 N8835601b1a664a5a8d9ad35e989db11b
23 sg:journal.1086446
24 schema:name Ultrasound-Guided Aspiration Biopsy for Detection of Nonpalpable Axillary Node Metastases in Breast Cancer Patients: New Diagnostic Method
25 schema:pagination 270-274
26 schema:productId N5845876da12a4319a71b99a7bbc0c3d4
27 N58a4869a1ed6455c81650a7de3410fb8
28 N668bf47de98a44d8b0e42334de726dcd
29 N83b4a03e4971499bb5b35fa610b02db3
30 Nfa930de96439478ab1205c7b782f78d4
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407700
32 https://doi.org/10.1007/s002689900227
33 schema:sdDatePublished 2019-04-11T01:00
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N96310ad0266647049ed29a5f1d128f12
36 schema:url http://link.springer.com/10.1007/s002689900227
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N064a6df4310c45f195471de0af9515b5 rdf:first sg:person.01343173600.42
41 rdf:rest N6df2dfbf222f488d96e4eb20642ef8d6
42 N093b18b0e2784b51839b8997a626ab39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
43 schema:name Sensitivity and Specificity
44 rdf:type schema:DefinedTerm
45 N11273aa8d03c46298b8825be407e235e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
46 schema:name Ultrasonography
47 rdf:type schema:DefinedTerm
48 N1cb03d467145497498e3bfc39b307233 schema:name Department of Surgical Oncology, University Hospital/Daniel den Hoed Cancer Center, Zuider Hospital, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL
49 rdf:type schema:Organization
50 N206d79cf09934c7f90c99cdf45774073 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Axilla
52 rdf:type schema:DefinedTerm
53 N207fea4c6713425eab3c3f4554fc358c rdf:first sg:person.0613165546.43
54 rdf:rest N3cf1a13114ab44819c5820f6a83c086b
55 N26a1926c9690406c9687c308f72c0819 schema:name Department of Surgical Oncology, University Hospital/Daniel den Hoed Cancer Center, Zuider Hospital, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL
56 rdf:type schema:Organization
57 N2968eb661a4a4701bee2dfef6b223f45 schema:volumeNumber 21
58 rdf:type schema:PublicationVolume
59 N2f83098c83a74effbcb93f2290936da8 schema:name Department of Surgical Oncology, University Hospital/Daniel den Hoed Cancer Center, Zuider Hospital, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL
60 rdf:type schema:Organization
61 N37141f07eb1849f3a6888628c3227ebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Female
63 rdf:type schema:DefinedTerm
64 N3cf1a13114ab44819c5820f6a83c086b rdf:first sg:person.01022136434.20
65 rdf:rest Nfd397081e8f047e783df7bea41e219f1
66 N5845876da12a4319a71b99a7bbc0c3d4 schema:name pubmed_id
67 schema:value 9015169
68 rdf:type schema:PropertyValue
69 N58a4869a1ed6455c81650a7de3410fb8 schema:name readcube_id
70 schema:value 3659a9f2f113193d9667bcef1cbab05fa3ef559f0d3ce05670d1400a04a5a6f9
71 rdf:type schema:PropertyValue
72 N5c130039287c4f16b650ea8eec594998 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Biopsy, Needle
74 rdf:type schema:DefinedTerm
75 N62a98cc581104e0399be258a0b52995d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Humans
77 rdf:type schema:DefinedTerm
78 N668bf47de98a44d8b0e42334de726dcd schema:name doi
79 schema:value 10.1007/s002689900227
80 rdf:type schema:PropertyValue
81 N6df2dfbf222f488d96e4eb20642ef8d6 rdf:first sg:person.012703454224.23
82 rdf:rest N207fea4c6713425eab3c3f4554fc358c
83 N74321bba3d494930a1be757f8b50df13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Lymphatic Metastasis
85 rdf:type schema:DefinedTerm
86 N7d082250cdf84f77a63e5f71ea3c66e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Breast Neoplasms
88 rdf:type schema:DefinedTerm
89 N83b4a03e4971499bb5b35fa610b02db3 schema:name nlm_unique_id
90 schema:value 7704052
91 rdf:type schema:PropertyValue
92 N8835601b1a664a5a8d9ad35e989db11b schema:issueNumber 3
93 rdf:type schema:PublicationIssue
94 N8d88ed5168a64c07a5bdf1cbc612784a rdf:first sg:person.01347341335.81
95 rdf:rest Nbf824c4549044f6baceb6314315b210a
96 N96310ad0266647049ed29a5f1d128f12 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nb059e22eade148f5be3b88e6a229726a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Prospective Studies
100 rdf:type schema:DefinedTerm
101 Nbf4fea469eee470aaf8147caff35cbdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Lymph Nodes
103 rdf:type schema:DefinedTerm
104 Nbf824c4549044f6baceb6314315b210a rdf:first sg:person.01044324702.49
105 rdf:rest rdf:nil
106 Nc5ed1d49a6e7492f83a2cdb1ceb45259 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Middle Aged
108 rdf:type schema:DefinedTerm
109 Nd87a00f864c24739a861fc58f1fcea30 rdf:first sg:person.01065303501.00
110 rdf:rest N8d88ed5168a64c07a5bdf1cbc612784a
111 Ne2823c7d8ccf4ef089241b021ec079ab schema:name Department of Surgical Oncology, University Hospital/Daniel den Hoed Cancer Center, Zuider Hospital, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL
112 rdf:type schema:Organization
113 Nfa930de96439478ab1205c7b782f78d4 schema:name dimensions_id
114 schema:value pub.1011407700
115 rdf:type schema:PropertyValue
116 Nfd397081e8f047e783df7bea41e219f1 rdf:first sg:person.01070251634.68
117 rdf:rest Nd87a00f864c24739a861fc58f1fcea30
118 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
119 schema:name Medical and Health Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
122 schema:name Oncology and Carcinogenesis
123 rdf:type schema:DefinedTerm
124 sg:journal.1086446 schema:issn 0364-2313
125 1432-2323
126 schema:name World Journal of Surgery
127 rdf:type schema:Periodical
128 sg:person.01022136434.20 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
129 schema:familyName Mali
130 schema:givenName Sybrand P.M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022136434.20
132 rdf:type schema:Person
133 sg:person.01044324702.49 schema:affiliation Ne2823c7d8ccf4ef089241b021ec079ab
134 schema:familyName Wiggers
135 schema:givenName Theo
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044324702.49
137 rdf:type schema:Person
138 sg:person.01065303501.00 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
139 schema:familyName Henzen-Logmans
140 schema:givenName Sonja C.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065303501.00
142 rdf:type schema:Person
143 sg:person.01070251634.68 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
144 schema:familyName Tjiam
145 schema:givenName Swanny L.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070251634.68
147 rdf:type schema:Person
148 sg:person.012703454224.23 schema:affiliation N2f83098c83a74effbcb93f2290936da8
149 schema:familyName van Geel
150 schema:givenName Albert N.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012703454224.23
152 rdf:type schema:Person
153 sg:person.01343173600.42 schema:affiliation N26a1926c9690406c9687c308f72c0819
154 schema:familyName Bonnema
155 schema:givenName Jorien
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343173600.42
157 rdf:type schema:Person
158 sg:person.01347341335.81 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
159 schema:familyName Schmitz
160 schema:givenName Paul I.M.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347341335.81
162 rdf:type schema:Person
163 sg:person.0613165546.43 schema:affiliation N1cb03d467145497498e3bfc39b307233
164 schema:familyName van Ooijen
165 schema:givenName Bart
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613165546.43
167 rdf:type schema:Person
168 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
169 schema:name Department of Pathology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL
170 Department of Radiology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL
171 Department of Statistics, University Hospital Rotterdam/Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands, NL
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...