Role of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in the Preoperative Evaluation of Small Hepatic Lesions in Patients with Colorectal Cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05

AUTHORS

Jai Young Cho, Yoon Jin Lee, Ho-Seong Han, Yoo-Seok Yoon, Jihoon Kim, YoungRok Choi, Hong Kyung Shin, Woohyung Lee

ABSTRACT

BACKGROUND: The initial abdominal computed tomography (CT) scans of patients with colorectal cancer (CRC) sometimes reveal equivocal hepatic lesions. In this study, we evaluated the outcomes of equivocal hepatic lesions found by abdominal CT and the diagnostic accuracy of subsequent liver magnetic resonance imaging (MRI). METHODS: We evaluated data of patients who underwent CRC resection between January 1, 2009 and December 31, 2009. Equivocal hepatic lesions of <1 cm in size on preoperative staging CT scans were included in this study. Gadoxetic acid-enhanced liver MRI was subsequently performed in all patients. Hepatic lesions that grew during the follow-up period (≥ 3 years) were considered potential metastases. RESULTS: Overall, 121 equivocal hepatic lesions were detected on preoperative staging CT in 65 out of 494 patients (13.2 %) who underwent colorectal surgery. Based on subsequent MRI, 11 lesions were classified as definitive metastatic lesions and 100 were classified as definitive benign lesions, including simple cysts or hemangiomas. Findings in the other 10 lesions were still inconclusive even after examining CT and MRI. Of the 11 lesions that were classified as metastatic by MRI and were resected, 10 were pathologically confirmed as metastases and one lesion was a pathologically benign nodule. All 100 benign lesions were stable on follow-up imaging and were classified as benign. Of the 10 equivocal lesions, 6 increased in size during the follow up, suggesting they were early metastases, while 4 were stable. The sensitivity and specificity for detecting liver metastases by gadoxetic acid-enhanced MRI of small equivocal hepatic lesions found by CT were 100 % (16/16) and 95.2 % (100/105), respectively, if MRI was equivocal or indicated definite metastasis. The negative predictive value was 100 % (100/100). CONCLUSION: Gadoxetic acid-enhanced MRI is a useful diagnostic tool for assessing equivocal hepatic lesions on preoperative CT of CRC patients that allows increased diagnostic accuracy and detection of additional colorectal liver metastasis lesions. More... »

PAGES

1161-1166

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00268-015-2944-5

DOI

http://dx.doi.org/10.1007/s00268-015-2944-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028555560

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25609116


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cysts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium DTPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemangioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, 463\u2013707, Seongnam, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Jai Young", 
        "id": "sg:person.01324552077.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324552077.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Yoon Jin", 
        "id": "sg:person.01104720560.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104720560.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, 463\u2013707, Seongnam, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Ho-Seong", 
        "id": "sg:person.01272436562.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272436562.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, 463\u2013707, Seongnam, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Yoo-Seok", 
        "id": "sg:person.01102461014.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102461014.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, 463\u2013707, Seongnam, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jihoon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, 463\u2013707, Seongnam, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "YoungRok", 
        "id": "sg:person.0633263126.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633263126.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, 463\u2013707, Seongnam, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Hong Kyung", 
        "id": "sg:person.0621014226.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621014226.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, 463\u2013707, Seongnam, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Woohyung", 
        "id": "sg:person.0667127426.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667127426.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2371042060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001963431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surg.2013.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009865648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.210.1.r99ja0371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013286105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200209000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014197437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200209000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014197437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200209000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014197437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.suronc.2007.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015997334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019698951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-012-2300-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023005114", 
          "https://doi.org/10.1245/s10434-012-2300-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000000525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023332354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000000525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023332354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-198908000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029529442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-198908000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029529442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2007.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038908309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11605-007-0149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041180731", 
          "https://doi.org/10.1007/s11605-007-0149-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.05.3074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043576224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(02)00059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045550235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7863/jum.2003.22.4.335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045640388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2273011768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2824-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049832073", 
          "https://doi.org/10.1007/s00330-013-2824-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-001-0266-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052856137", 
          "https://doi.org/10.1007/s00268-001-0266-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-001-0266-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052856137", 
          "https://doi.org/10.1007/s00268-001-0266-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199909000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060135098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199909000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060135098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199909000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060135098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.174.3.1740691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069323033"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "BACKGROUND: The initial abdominal computed tomography (CT) scans of patients with colorectal cancer (CRC) sometimes reveal equivocal hepatic lesions. In this study, we evaluated the outcomes of equivocal hepatic lesions found by abdominal CT and the diagnostic accuracy of subsequent liver magnetic resonance imaging (MRI).\nMETHODS: We evaluated data of patients who underwent CRC resection between January 1, 2009 and December 31, 2009. Equivocal hepatic lesions of <1 cm in size on preoperative staging CT scans were included in this study. Gadoxetic acid-enhanced liver MRI was subsequently performed in all patients. Hepatic lesions that grew during the follow-up period (\u2265 3 years) were considered potential metastases.\nRESULTS: Overall, 121 equivocal hepatic lesions were detected on preoperative staging CT in 65 out of 494 patients (13.2 %) who underwent colorectal surgery. Based on subsequent MRI, 11 lesions were classified as definitive metastatic lesions and 100 were classified as definitive benign lesions, including simple cysts or hemangiomas. Findings in the other 10 lesions were still inconclusive even after examining CT and MRI. Of the 11 lesions that were classified as metastatic by MRI and were resected, 10 were pathologically confirmed as metastases and one lesion was a pathologically benign nodule. All 100 benign lesions were stable on follow-up imaging and were classified as benign. Of the 10 equivocal lesions, 6 increased in size during the follow up, suggesting they were early metastases, while 4 were stable. The sensitivity and specificity for detecting liver metastases by gadoxetic acid-enhanced MRI of small equivocal hepatic lesions found by CT were 100 % (16/16) and 95.2 % (100/105), respectively, if MRI was equivocal or indicated definite metastasis. The negative predictive value was 100 % (100/100).\nCONCLUSION: Gadoxetic acid-enhanced MRI is a useful diagnostic tool for assessing equivocal hepatic lesions on preoperative CT of CRC patients that allows increased diagnostic accuracy and detection of additional colorectal liver metastasis lesions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00268-015-2944-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086446", 
        "issn": [
          "0364-2313", 
          "1432-2323"
        ], 
        "name": "World Journal of Surgery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Role of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in the Preoperative Evaluation of Small Hepatic Lesions in Patients with Colorectal Cancer", 
    "pagination": "1161-1166", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "88079fce61639f585ad36257639cbdb736a8ee85d323aeb24f5aa593946d2b52"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25609116"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704052"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00268-015-2944-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028555560"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00268-015-2944-5", 
      "https://app.dimensions.ai/details/publication/pub.1028555560"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00268-015-2944-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00268-015-2944-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00268-015-2944-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00268-015-2944-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00268-015-2944-5'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      62 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00268-015-2944-5 schema:about N12d07af2f72048f5bc13221ae925d8cd
2 N495d22f59e6d49068b8fc65ed8fee5ff
3 N5ac0f5911fed433988d0c752d1469bf9
4 N6795a36ffa074069b168c85b2068ff42
5 N9a55188b2ff74c028dbb55789058bb71
6 Na7a54fea409a450da2d6b58449f4cb0f
7 Nab271bc780e24753aee8c07b6741bea8
8 Nadb3d327a6f9465bb288390550f8837f
9 Nb52f25e8b9a5463f8858baa3a33f106b
10 Nb532bb08e64845f2966411e4afc64561
11 Nb753577c590845e6abfecd754e78df7e
12 Nd8b870f80c564cf1950909e9d5689e67
13 Nd92139198f8c47ba96e1f5acd8d5231f
14 Nf0c8b1a5521c4bed909830c17804d34a
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N7372be6730bb42ada1cc484829902ed2
18 schema:citation sg:pub.10.1007/s00268-001-0266-2
19 sg:pub.10.1007/s00330-013-2824-z
20 sg:pub.10.1007/s11605-007-0149-4
21 sg:pub.10.1245/s10434-012-2300-z
22 https://doi.org/10.1016/j.ejrad.2007.03.017
23 https://doi.org/10.1016/j.ejrad.2012.03.032
24 https://doi.org/10.1016/j.surg.2013.04.021
25 https://doi.org/10.1016/j.suronc.2007.04.001
26 https://doi.org/10.1016/s0959-8049(02)00059-x
27 https://doi.org/10.1097/00000658-198908000-00001
28 https://doi.org/10.1097/00000658-199909000-00004
29 https://doi.org/10.1097/00004728-200209000-00009
30 https://doi.org/10.1097/sla.0000000000000525
31 https://doi.org/10.1148/radiol.2273011768
32 https://doi.org/10.1148/radiol.2371042060
33 https://doi.org/10.1148/radiology.210.1.r99ja0371
34 https://doi.org/10.1200/jco.2005.05.3074
35 https://doi.org/10.2214/ajr.174.3.1740691
36 https://doi.org/10.7863/jum.2003.22.4.335
37 schema:datePublished 2015-05
38 schema:datePublishedReg 2015-05-01
39 schema:description BACKGROUND: The initial abdominal computed tomography (CT) scans of patients with colorectal cancer (CRC) sometimes reveal equivocal hepatic lesions. In this study, we evaluated the outcomes of equivocal hepatic lesions found by abdominal CT and the diagnostic accuracy of subsequent liver magnetic resonance imaging (MRI). METHODS: We evaluated data of patients who underwent CRC resection between January 1, 2009 and December 31, 2009. Equivocal hepatic lesions of <1 cm in size on preoperative staging CT scans were included in this study. Gadoxetic acid-enhanced liver MRI was subsequently performed in all patients. Hepatic lesions that grew during the follow-up period (≥ 3 years) were considered potential metastases. RESULTS: Overall, 121 equivocal hepatic lesions were detected on preoperative staging CT in 65 out of 494 patients (13.2 %) who underwent colorectal surgery. Based on subsequent MRI, 11 lesions were classified as definitive metastatic lesions and 100 were classified as definitive benign lesions, including simple cysts or hemangiomas. Findings in the other 10 lesions were still inconclusive even after examining CT and MRI. Of the 11 lesions that were classified as metastatic by MRI and were resected, 10 were pathologically confirmed as metastases and one lesion was a pathologically benign nodule. All 100 benign lesions were stable on follow-up imaging and were classified as benign. Of the 10 equivocal lesions, 6 increased in size during the follow up, suggesting they were early metastases, while 4 were stable. The sensitivity and specificity for detecting liver metastases by gadoxetic acid-enhanced MRI of small equivocal hepatic lesions found by CT were 100 % (16/16) and 95.2 % (100/105), respectively, if MRI was equivocal or indicated definite metastasis. The negative predictive value was 100 % (100/100). CONCLUSION: Gadoxetic acid-enhanced MRI is a useful diagnostic tool for assessing equivocal hepatic lesions on preoperative CT of CRC patients that allows increased diagnostic accuracy and detection of additional colorectal liver metastasis lesions.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N61ebc140fd474f52bda59849406f208f
44 Ne9254425c7c24c018cf56b240040d4d6
45 sg:journal.1086446
46 schema:name Role of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in the Preoperative Evaluation of Small Hepatic Lesions in Patients with Colorectal Cancer
47 schema:pagination 1161-1166
48 schema:productId N09319361f7814764a096c3513f2b8f07
49 Na621a3797339429982679a014bf28c30
50 Nb15281b9ec3e4da7a6f01ad15f239047
51 Ndec873b8913d4527a14e81b3aa63d315
52 Ne6f876c7cd7747acad6e61cb1c98b199
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028555560
54 https://doi.org/10.1007/s00268-015-2944-5
55 schema:sdDatePublished 2019-04-11T02:01
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Ndcbef0c5e4474553923feeb071132dc7
58 schema:url http://link.springer.com/10.1007%2Fs00268-015-2944-5
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N01f4a22bb5c248b68d085be74e8bba55 rdf:first sg:person.01272436562.15
63 rdf:rest Nf35cd1e43c9c4c82975eaf30d0683fa1
64 N075a6109591c42be8d2131f0f7514938 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
65 schema:familyName Kim
66 schema:givenName Jihoon
67 rdf:type schema:Person
68 N09319361f7814764a096c3513f2b8f07 schema:name readcube_id
69 schema:value 88079fce61639f585ad36257639cbdb736a8ee85d323aeb24f5aa593946d2b52
70 rdf:type schema:PropertyValue
71 N12d07af2f72048f5bc13221ae925d8cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Female
73 rdf:type schema:DefinedTerm
74 N20b60ec0ed6946abafb39c14852b2a20 rdf:first sg:person.01104720560.84
75 rdf:rest N01f4a22bb5c248b68d085be74e8bba55
76 N495d22f59e6d49068b8fc65ed8fee5ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Middle Aged
78 rdf:type schema:DefinedTerm
79 N5ac0f5911fed433988d0c752d1469bf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Colorectal Neoplasms
81 rdf:type schema:DefinedTerm
82 N61ebc140fd474f52bda59849406f208f schema:issueNumber 5
83 rdf:type schema:PublicationIssue
84 N6795a36ffa074069b168c85b2068ff42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Cysts
86 rdf:type schema:DefinedTerm
87 N7372be6730bb42ada1cc484829902ed2 rdf:first sg:person.01324552077.75
88 rdf:rest N20b60ec0ed6946abafb39c14852b2a20
89 N756344cd189e4f75a729a9fb9fa430f9 rdf:first sg:person.0667127426.76
90 rdf:rest rdf:nil
91 N9a55188b2ff74c028dbb55789058bb71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 Na621a3797339429982679a014bf28c30 schema:name pubmed_id
95 schema:value 25609116
96 rdf:type schema:PropertyValue
97 Na7a54fea409a450da2d6b58449f4cb0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Hemangioma
99 rdf:type schema:DefinedTerm
100 Nab271bc780e24753aee8c07b6741bea8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Liver Neoplasms
102 rdf:type schema:DefinedTerm
103 Nadb3d327a6f9465bb288390550f8837f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Aged
105 rdf:type schema:DefinedTerm
106 Nb15281b9ec3e4da7a6f01ad15f239047 schema:name dimensions_id
107 schema:value pub.1028555560
108 rdf:type schema:PropertyValue
109 Nb443825adbe749278eff6cb676c877c6 rdf:first sg:person.0633263126.40
110 rdf:rest Nd72f7c34aaac4769824070057f976961
111 Nb52f25e8b9a5463f8858baa3a33f106b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Predictive Value of Tests
113 rdf:type schema:DefinedTerm
114 Nb532bb08e64845f2966411e4afc64561 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Magnetic Resonance Imaging
116 rdf:type schema:DefinedTerm
117 Nb753577c590845e6abfecd754e78df7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Gadolinium DTPA
119 rdf:type schema:DefinedTerm
120 Nd72f7c34aaac4769824070057f976961 rdf:first sg:person.0621014226.53
121 rdf:rest N756344cd189e4f75a729a9fb9fa430f9
122 Nd8b870f80c564cf1950909e9d5689e67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Male
124 rdf:type schema:DefinedTerm
125 Nd92139198f8c47ba96e1f5acd8d5231f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Contrast Media
127 rdf:type schema:DefinedTerm
128 Ndcbef0c5e4474553923feeb071132dc7 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Ndec873b8913d4527a14e81b3aa63d315 schema:name nlm_unique_id
131 schema:value 7704052
132 rdf:type schema:PropertyValue
133 Ne6f876c7cd7747acad6e61cb1c98b199 schema:name doi
134 schema:value 10.1007/s00268-015-2944-5
135 rdf:type schema:PropertyValue
136 Ne9254425c7c24c018cf56b240040d4d6 schema:volumeNumber 39
137 rdf:type schema:PublicationVolume
138 Nea5f91cc718d43c1a9f0fc4b94555a95 rdf:first N075a6109591c42be8d2131f0f7514938
139 rdf:rest Nb443825adbe749278eff6cb676c877c6
140 Nf0c8b1a5521c4bed909830c17804d34a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Tomography, X-Ray Computed
142 rdf:type schema:DefinedTerm
143 Nf35cd1e43c9c4c82975eaf30d0683fa1 rdf:first sg:person.01102461014.56
144 rdf:rest Nea5f91cc718d43c1a9f0fc4b94555a95
145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
146 schema:name Medical and Health Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
149 schema:name Clinical Sciences
150 rdf:type schema:DefinedTerm
151 sg:journal.1086446 schema:issn 0364-2313
152 1432-2323
153 schema:name World Journal of Surgery
154 rdf:type schema:Periodical
155 sg:person.01102461014.56 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
156 schema:familyName Yoon
157 schema:givenName Yoo-Seok
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102461014.56
159 rdf:type schema:Person
160 sg:person.01104720560.84 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
161 schema:familyName Lee
162 schema:givenName Yoon Jin
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104720560.84
164 rdf:type schema:Person
165 sg:person.01272436562.15 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
166 schema:familyName Han
167 schema:givenName Ho-Seong
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272436562.15
169 rdf:type schema:Person
170 sg:person.01324552077.75 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
171 schema:familyName Cho
172 schema:givenName Jai Young
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324552077.75
174 rdf:type schema:Person
175 sg:person.0621014226.53 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
176 schema:familyName Shin
177 schema:givenName Hong Kyung
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621014226.53
179 rdf:type schema:Person
180 sg:person.0633263126.40 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
181 schema:familyName Choi
182 schema:givenName YoungRok
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633263126.40
184 rdf:type schema:Person
185 sg:person.0667127426.76 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
186 schema:familyName Lee
187 schema:givenName Woohyung
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667127426.76
189 rdf:type schema:Person
190 sg:pub.10.1007/s00268-001-0266-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052856137
191 https://doi.org/10.1007/s00268-001-0266-2
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s00330-013-2824-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049832073
194 https://doi.org/10.1007/s00330-013-2824-z
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s11605-007-0149-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041180731
197 https://doi.org/10.1007/s11605-007-0149-4
198 rdf:type schema:CreativeWork
199 sg:pub.10.1245/s10434-012-2300-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023005114
200 https://doi.org/10.1245/s10434-012-2300-z
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.ejrad.2007.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038908309
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.ejrad.2012.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019698951
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.surg.2013.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009865648
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.suronc.2007.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015997334
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0959-8049(02)00059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045550235
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1097/00000658-198908000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029529442
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1097/00000658-199909000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060135098
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1097/00004728-200209000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014197437
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1097/sla.0000000000000525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023332354
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1148/radiol.2273011768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047077430
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1148/radiol.2371042060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001963431
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1148/radiology.210.1.r99ja0371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013286105
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1200/jco.2005.05.3074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043576224
227 rdf:type schema:CreativeWork
228 https://doi.org/10.2214/ajr.174.3.1740691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069323033
229 rdf:type schema:CreativeWork
230 https://doi.org/10.7863/jum.2003.22.4.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045640388
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.412480.b schema:alternateName Seoul National University Bundang Hospital
233 schema:name Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
234 Department of Surgery, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, 463–707, Seongnam, Gyeonggi-do, Republic of Korea
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...