Diagnostic accuracy of 3D magnetic resonance elastography for assessing histologic grade of hepatocellular carcinoma: comparison of three methods for positioning ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-06-03

AUTHORS

Weimin Liu, Dailin Rong, Jie Zhu, Yuanqiang Xiao, Linqi Zhang, Ying Deng, Jun Chen, Meng Yin, Sudhakar K. Venkatesh, Richard L. Ehman, Jin Wang

ABSTRACT

PurposeTo assess the influence of region of interest (ROI) placement on the predictive value of 3D MRE in differentiating the histologic grade of HCC.Methods85 patients with pathologically confirmed HCCs were analyzed using 3D MRE imaging, two radiologists measured the tumor stiffness with three different ROI positioning methods. Intraclass correlation coefficient (ICC) was expressed in terms of inter- and intra-observer agreements. Kruskal–Wallis rank test or one-way ANOVA was used to compare the difference in MRE stiffness across the three-ROI positioning methods. Receiver operating characteristic curve analysis (ROC) was performed, and the area under curve (AUC) was measured to evaluate the diagnostic performance.ResultsThere were 64 (75%) well-or-moderately differentiated HCCs and 21(25%) poorly differentiated HCCs included finally. Almost excellent inter- and intra-observer agreements (all ICC > 0.82) were observed for all three-ROI methods, the volumetric method has the highest values (inter-observer ICC 0.967, intra-observer ICC 0.919, 0.926, respectively). The mean stiffnesses of poorly differentiated HCC obtained by two readers were significantly higher than well-or-moderately differentiated HCC with volumetric method (7.07 ± 1.57 Kpa, 5.00 ± 1.49 Kpa, and 6.85 ± 1.49 Kpa, 4.94 ± 1.48 Kpa, respectively) and three-ROI method (6.14 ± 1.71 Kpa, 4.91 ± 1.56 Kpa and 5.94 ± 1.61 Kpa, 4.84 ± 1.54 Kpa, respectively) but not on single-ROI method (p > 0.005), for the diagnostic performance, the highest area under the curve (AUC) with a value of 0.837, 0.812 by using the volumetric method, followed by the three-ROI method (0.713, 0.754) and single-ROI method.ConclusionDifferent ROI positioning methods significantly affect HCC tumor stiffness measurements. The whole tumor volumetric analysis is superior to ROI-based methods for predicting the grade of HCC. More... »

PAGES

4601-4609

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4

DOI

http://dx.doi.org/10.1007/s00261-021-03150-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138578024

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34085091


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Weimin", 
        "id": "sg:person.012442530053.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442530053.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rong", 
        "givenName": "Dailin", 
        "id": "sg:person.016011352163.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016011352163.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jie", 
        "id": "sg:person.016516604701.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516604701.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Yuanqiang", 
        "id": "sg:person.016352432417.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016352432417.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Linqi", 
        "id": "sg:person.011755534243.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755534243.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Ying", 
        "id": "sg:person.015770371244.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770371244.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.01023412627.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Meng", 
        "id": "sg:person.01042251410.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042251410.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venkatesh", 
        "givenName": "Sudhakar K.", 
        "id": "sg:person.01152463164.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152463164.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ehman", 
        "givenName": "Richard L.", 
        "id": "sg:person.0634643630.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634643630.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jin", 
        "id": "sg:person.016236616374.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236616374.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-011-2220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018175402", 
          "https://doi.org/10.1007/s00330-011-2220-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2016.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030586117", 
          "https://doi.org/10.1038/ajg.2016.65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-019-06478-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122411452", 
          "https://doi.org/10.1007/s00330-019-06478-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5638-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105704410", 
          "https://doi.org/10.1007/s00330-018-5638-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-019-0357-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117981165", 
          "https://doi.org/10.1186/s12880-019-0357-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-03", 
    "datePublishedReg": "2021-06-03", 
    "description": "PurposeTo assess the influence of region of interest (ROI) placement on the predictive value of 3D MRE in differentiating the histologic grade of HCC.Methods85 patients with pathologically confirmed HCCs were analyzed using 3D MRE imaging, two radiologists measured the tumor stiffness with three different ROI positioning methods. Intraclass correlation coefficient (ICC) was expressed in terms of inter- and intra-observer agreements. Kruskal\u2013Wallis rank test or one-way ANOVA was used to compare the difference in MRE stiffness across the three-ROI positioning methods. Receiver operating characteristic curve analysis (ROC) was performed, and the area under curve (AUC) was measured to evaluate the diagnostic performance.ResultsThere were 64 (75%) well-or-moderately differentiated HCCs and 21(25%) poorly differentiated HCCs included finally. Almost excellent inter- and intra-observer agreements (all ICC\u2009>\u20090.82) were observed for all three-ROI methods, the volumetric method has the highest values (inter-observer ICC 0.967, intra-observer ICC 0.919, 0.926, respectively). The mean stiffnesses of poorly differentiated HCC obtained by two readers were significantly higher than well-or-moderately differentiated HCC with volumetric method (7.07\u2009\u00b1\u20091.57 Kpa, 5.00\u2009\u00b1\u20091.49 Kpa, and 6.85\u2009\u00b1\u20091.49 Kpa, 4.94\u2009\u00b1\u20091.48 Kpa, respectively) and three-ROI method (6.14\u2009\u00b1\u20091.71 Kpa, 4.91\u2009\u00b1\u20091.56 Kpa and 5.94\u2009\u00b1\u20091.61 Kpa, 4.84\u2009\u00b1\u20091.54 Kpa, respectively) but not on single-ROI method (p\u2009>\u20090.005), for the diagnostic performance, the highest area under the curve (AUC) with a value of 0.837, 0.812 by using the volumetric method, followed by the three-ROI method (0.713, 0.754) and single-ROI method.ConclusionDifferent ROI positioning methods significantly affect HCC tumor stiffness measurements. The whole tumor volumetric analysis is superior to ROI-based methods for predicting the grade of HCC.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00261-021-03150-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6501418", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "intraclass correlation coefficient", 
      "histologic grade", 
      "intra-observer agreement", 
      "diagnostic performance", 
      "tumor volumetric analysis", 
      "characteristic curve analysis", 
      "Kruskal-Wallis rank test", 
      "single-ROI method", 
      "hepatocellular carcinoma", 
      "predictive value", 
      "HCC", 
      "magnetic resonance elastography", 
      "tumor stiffness", 
      "diagnostic accuracy", 
      "MRE imaging", 
      "curve analysis", 
      "volumetric analysis", 
      "stiffness measurement", 
      "interest placement", 
      "rank test", 
      "one-way ANOVA", 
      "mean stiffness", 
      "resonance elastography", 
      "MRE stiffness", 
      "highest area", 
      "grade", 
      "patients", 
      "region of interest", 
      "ResultsThere", 
      "carcinoma", 
      "PurposeTo", 
      "influence of region", 
      "correlation coefficient", 
      "radiologists", 
      "elastography", 
      "imaging", 
      "placement", 
      "ANOVA", 
      "differences", 
      "stiffness", 
      "test", 
      "curves", 
      "analysis", 
      "area", 
      "volumetric method", 
      "values", 
      "ROI", 
      "method", 
      "region", 
      "higher values", 
      "receiver", 
      "MRE", 
      "comparison", 
      "influence", 
      "measurements", 
      "interest", 
      "terms", 
      "agreement", 
      "readers", 
      "accuracy", 
      "performance", 
      "coefficient", 
      "positioning method"
    ], 
    "name": "Diagnostic accuracy of 3D magnetic resonance elastography for assessing histologic grade of hepatocellular carcinoma: comparison of three methods for positioning region of interest", 
    "pagination": "4601-4609", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138578024"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-021-03150-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34085091"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-021-03150-4", 
      "https://app.dimensions.ai/details/publication/pub.1138578024"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_880.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00261-021-03150-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      100 URIs      87 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-021-03150-4 schema:about N1fe8ddb2db284c4f8308c510d653afd7
2 N554551b03e0644dd9f8a455eaed65075
3 N5961a21739d34a469f106e205bb01b32
4 N7f997acfe99d41318e426d01f1c8b0c6
5 Nb4751bfc81b649e6bc3cd47551f8cc77
6 Ncbf1075c5d6f4fc49f64853635c4a192
7 Ndd4af0bd4bb6412aac8527bfa12fd1b2
8 anzsrc-for:11
9 anzsrc-for:1103
10 schema:author Nb7f9b7f39a6e401093a2fcdfda1a33ec
11 schema:citation sg:pub.10.1007/s00330-011-2220-5
12 sg:pub.10.1007/s00330-018-5638-1
13 sg:pub.10.1007/s00330-019-06478-0
14 sg:pub.10.1038/ajg.2016.65
15 sg:pub.10.1186/s12880-019-0357-x
16 schema:datePublished 2021-06-03
17 schema:datePublishedReg 2021-06-03
18 schema:description PurposeTo assess the influence of region of interest (ROI) placement on the predictive value of 3D MRE in differentiating the histologic grade of HCC.Methods85 patients with pathologically confirmed HCCs were analyzed using 3D MRE imaging, two radiologists measured the tumor stiffness with three different ROI positioning methods. Intraclass correlation coefficient (ICC) was expressed in terms of inter- and intra-observer agreements. Kruskal–Wallis rank test or one-way ANOVA was used to compare the difference in MRE stiffness across the three-ROI positioning methods. Receiver operating characteristic curve analysis (ROC) was performed, and the area under curve (AUC) was measured to evaluate the diagnostic performance.ResultsThere were 64 (75%) well-or-moderately differentiated HCCs and 21(25%) poorly differentiated HCCs included finally. Almost excellent inter- and intra-observer agreements (all ICC > 0.82) were observed for all three-ROI methods, the volumetric method has the highest values (inter-observer ICC 0.967, intra-observer ICC 0.919, 0.926, respectively). The mean stiffnesses of poorly differentiated HCC obtained by two readers were significantly higher than well-or-moderately differentiated HCC with volumetric method (7.07 ± 1.57 Kpa, 5.00 ± 1.49 Kpa, and 6.85 ± 1.49 Kpa, 4.94 ± 1.48 Kpa, respectively) and three-ROI method (6.14 ± 1.71 Kpa, 4.91 ± 1.56 Kpa and 5.94 ± 1.61 Kpa, 4.84 ± 1.54 Kpa, respectively) but not on single-ROI method (p > 0.005), for the diagnostic performance, the highest area under the curve (AUC) with a value of 0.837, 0.812 by using the volumetric method, followed by the three-ROI method (0.713, 0.754) and single-ROI method.ConclusionDifferent ROI positioning methods significantly affect HCC tumor stiffness measurements. The whole tumor volumetric analysis is superior to ROI-based methods for predicting the grade of HCC.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf Nb29a883247914214a2880f4ebba6c768
22 Nb4c3ca0925364bf381d042dd67ef238f
23 sg:journal.1297457
24 schema:keywords ANOVA
25 HCC
26 Kruskal-Wallis rank test
27 MRE
28 MRE imaging
29 MRE stiffness
30 PurposeTo
31 ROI
32 ResultsThere
33 accuracy
34 agreement
35 analysis
36 area
37 carcinoma
38 characteristic curve analysis
39 coefficient
40 comparison
41 correlation coefficient
42 curve analysis
43 curves
44 diagnostic accuracy
45 diagnostic performance
46 differences
47 elastography
48 grade
49 hepatocellular carcinoma
50 higher values
51 highest area
52 histologic grade
53 imaging
54 influence
55 influence of region
56 interest
57 interest placement
58 intra-observer agreement
59 intraclass correlation coefficient
60 magnetic resonance elastography
61 mean stiffness
62 measurements
63 method
64 one-way ANOVA
65 patients
66 performance
67 placement
68 positioning method
69 predictive value
70 radiologists
71 rank test
72 readers
73 receiver
74 region
75 region of interest
76 resonance elastography
77 single-ROI method
78 stiffness
79 stiffness measurement
80 terms
81 test
82 tumor stiffness
83 tumor volumetric analysis
84 values
85 volumetric analysis
86 volumetric method
87 schema:name Diagnostic accuracy of 3D magnetic resonance elastography for assessing histologic grade of hepatocellular carcinoma: comparison of three methods for positioning region of interest
88 schema:pagination 4601-4609
89 schema:productId N4058057613634ddd8fd6906ef5eee2e8
90 N67d9aed779764e9a96160c28f3c0ad59
91 Nebe14bdc877f4e8682bd8afac6f1b7e0
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138578024
93 https://doi.org/10.1007/s00261-021-03150-4
94 schema:sdDatePublished 2022-09-02T16:05
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N43c1888ad6854d2e99f47db6b07673c8
97 schema:url https://doi.org/10.1007/s00261-021-03150-4
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N0847c04c83184a78b147a5e8c2bf9618 rdf:first sg:person.01023412627.52
102 rdf:rest N430df79c4a504342acf1a594c4d8b8b3
103 N1380d8e65d67418d83a7193e106a9846 rdf:first sg:person.016011352163.91
104 rdf:rest N65d0c143ecbc4decb7055beb4704ef96
105 N1b66104c759e43a4aa80055deef93e91 rdf:first sg:person.011755534243.57
106 rdf:rest Nbf661778614a40f79a2eb285c8dfaae3
107 N1fe8ddb2db284c4f8308c510d653afd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name ROC Curve
109 rdf:type schema:DefinedTerm
110 N4058057613634ddd8fd6906ef5eee2e8 schema:name doi
111 schema:value 10.1007/s00261-021-03150-4
112 rdf:type schema:PropertyValue
113 N430df79c4a504342acf1a594c4d8b8b3 rdf:first sg:person.01042251410.25
114 rdf:rest Nba2cb3b5ef5c4385a0197fbb84040229
115 N43c1888ad6854d2e99f47db6b07673c8 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N554551b03e0644dd9f8a455eaed65075 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 N5961a21739d34a469f106e205bb01b32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Reproducibility of Results
122 rdf:type schema:DefinedTerm
123 N65d0c143ecbc4decb7055beb4704ef96 rdf:first sg:person.016516604701.16
124 rdf:rest N94d2da550e2a4cc2b70afd06030113fd
125 N67d9aed779764e9a96160c28f3c0ad59 schema:name pubmed_id
126 schema:value 34085091
127 rdf:type schema:PropertyValue
128 N7f997acfe99d41318e426d01f1c8b0c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Retrospective Studies
130 rdf:type schema:DefinedTerm
131 N839f023b8edf47e08e5691456f21eb22 rdf:first sg:person.016236616374.52
132 rdf:rest rdf:nil
133 N94d2da550e2a4cc2b70afd06030113fd rdf:first sg:person.016352432417.86
134 rdf:rest N1b66104c759e43a4aa80055deef93e91
135 Nae6b03b6e0cf4ff1a14a051d277a551e rdf:first sg:person.0634643630.59
136 rdf:rest N839f023b8edf47e08e5691456f21eb22
137 Nb29a883247914214a2880f4ebba6c768 schema:issueNumber 10
138 rdf:type schema:PublicationIssue
139 Nb4751bfc81b649e6bc3cd47551f8cc77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Elasticity Imaging Techniques
141 rdf:type schema:DefinedTerm
142 Nb4c3ca0925364bf381d042dd67ef238f schema:volumeNumber 46
143 rdf:type schema:PublicationVolume
144 Nb7f9b7f39a6e401093a2fcdfda1a33ec rdf:first sg:person.012442530053.89
145 rdf:rest N1380d8e65d67418d83a7193e106a9846
146 Nba2cb3b5ef5c4385a0197fbb84040229 rdf:first sg:person.01152463164.49
147 rdf:rest Nae6b03b6e0cf4ff1a14a051d277a551e
148 Nbf661778614a40f79a2eb285c8dfaae3 rdf:first sg:person.015770371244.97
149 rdf:rest N0847c04c83184a78b147a5e8c2bf9618
150 Ncbf1075c5d6f4fc49f64853635c4a192 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Carcinoma, Hepatocellular
152 rdf:type schema:DefinedTerm
153 Ndd4af0bd4bb6412aac8527bfa12fd1b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Liver Neoplasms
155 rdf:type schema:DefinedTerm
156 Nebe14bdc877f4e8682bd8afac6f1b7e0 schema:name dimensions_id
157 schema:value pub.1138578024
158 rdf:type schema:PropertyValue
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
163 schema:name Clinical Sciences
164 rdf:type schema:DefinedTerm
165 sg:grant.6501418 http://pending.schema.org/fundedItem sg:pub.10.1007/s00261-021-03150-4
166 rdf:type schema:MonetaryGrant
167 sg:journal.1297457 schema:issn 2366-004X
168 2366-0058
169 schema:name Abdominal Radiology
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
173 schema:familyName Chen
174 schema:givenName Jun
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
176 rdf:type schema:Person
177 sg:person.01042251410.25 schema:affiliation grid-institutes:grid.66875.3a
178 schema:familyName Yin
179 schema:givenName Meng
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042251410.25
181 rdf:type schema:Person
182 sg:person.01152463164.49 schema:affiliation grid-institutes:grid.66875.3a
183 schema:familyName Venkatesh
184 schema:givenName Sudhakar K.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152463164.49
186 rdf:type schema:Person
187 sg:person.011755534243.57 schema:affiliation grid-institutes:grid.12981.33
188 schema:familyName Zhang
189 schema:givenName Linqi
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755534243.57
191 rdf:type schema:Person
192 sg:person.012442530053.89 schema:affiliation grid-institutes:grid.12981.33
193 schema:familyName Liu
194 schema:givenName Weimin
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442530053.89
196 rdf:type schema:Person
197 sg:person.015770371244.97 schema:affiliation grid-institutes:grid.12981.33
198 schema:familyName Deng
199 schema:givenName Ying
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770371244.97
201 rdf:type schema:Person
202 sg:person.016011352163.91 schema:affiliation grid-institutes:grid.12981.33
203 schema:familyName Rong
204 schema:givenName Dailin
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016011352163.91
206 rdf:type schema:Person
207 sg:person.016236616374.52 schema:affiliation grid-institutes:grid.12981.33
208 schema:familyName Wang
209 schema:givenName Jin
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236616374.52
211 rdf:type schema:Person
212 sg:person.016352432417.86 schema:affiliation grid-institutes:grid.12981.33
213 schema:familyName Xiao
214 schema:givenName Yuanqiang
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016352432417.86
216 rdf:type schema:Person
217 sg:person.016516604701.16 schema:affiliation grid-institutes:grid.12981.33
218 schema:familyName Zhu
219 schema:givenName Jie
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516604701.16
221 rdf:type schema:Person
222 sg:person.0634643630.59 schema:affiliation grid-institutes:grid.66875.3a
223 schema:familyName Ehman
224 schema:givenName Richard L.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634643630.59
226 rdf:type schema:Person
227 sg:pub.10.1007/s00330-011-2220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018175402
228 https://doi.org/10.1007/s00330-011-2220-5
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s00330-018-5638-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105704410
231 https://doi.org/10.1007/s00330-018-5638-1
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s00330-019-06478-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122411452
234 https://doi.org/10.1007/s00330-019-06478-0
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/ajg.2016.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030586117
237 https://doi.org/10.1038/ajg.2016.65
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/s12880-019-0357-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1117981165
240 https://doi.org/10.1186/s12880-019-0357-x
241 rdf:type schema:CreativeWork
242 grid-institutes:grid.12981.33 schema:alternateName Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People’s Republic Of China
243 schema:name Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People’s Republic Of China
244 rdf:type schema:Organization
245 grid-institutes:grid.66875.3a schema:alternateName Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
246 schema:name Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...