Diagnostic accuracy of 3D magnetic resonance elastography for assessing histologic grade of hepatocellular carcinoma: comparison of three methods for positioning ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-06-03

AUTHORS

Weimin Liu, Dailin Rong, Jie Zhu, Yuanqiang Xiao, Linqi Zhang, Ying Deng, Jun Chen, Meng Yin, Sudhakar K. Venkatesh, Richard L. Ehman, Jin Wang

ABSTRACT

PurposeTo assess the influence of region of interest (ROI) placement on the predictive value of 3D MRE in differentiating the histologic grade of HCC.Methods85 patients with pathologically confirmed HCCs were analyzed using 3D MRE imaging, two radiologists measured the tumor stiffness with three different ROI positioning methods. Intraclass correlation coefficient (ICC) was expressed in terms of inter- and intra-observer agreements. Kruskal–Wallis rank test or one-way ANOVA was used to compare the difference in MRE stiffness across the three-ROI positioning methods. Receiver operating characteristic curve analysis (ROC) was performed, and the area under curve (AUC) was measured to evaluate the diagnostic performance.ResultsThere were 64 (75%) well-or-moderately differentiated HCCs and 21(25%) poorly differentiated HCCs included finally. Almost excellent inter- and intra-observer agreements (all ICC > 0.82) were observed for all three-ROI methods, the volumetric method has the highest values (inter-observer ICC 0.967, intra-observer ICC 0.919, 0.926, respectively). The mean stiffnesses of poorly differentiated HCC obtained by two readers were significantly higher than well-or-moderately differentiated HCC with volumetric method (7.07 ± 1.57 Kpa, 5.00 ± 1.49 Kpa, and 6.85 ± 1.49 Kpa, 4.94 ± 1.48 Kpa, respectively) and three-ROI method (6.14 ± 1.71 Kpa, 4.91 ± 1.56 Kpa and 5.94 ± 1.61 Kpa, 4.84 ± 1.54 Kpa, respectively) but not on single-ROI method (p > 0.005), for the diagnostic performance, the highest area under the curve (AUC) with a value of 0.837, 0.812 by using the volumetric method, followed by the three-ROI method (0.713, 0.754) and single-ROI method.ConclusionDifferent ROI positioning methods significantly affect HCC tumor stiffness measurements. The whole tumor volumetric analysis is superior to ROI-based methods for predicting the grade of HCC. More... »

PAGES

4601-4609

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4

DOI

http://dx.doi.org/10.1007/s00261-021-03150-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138578024

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34085091


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Weimin", 
        "id": "sg:person.012442530053.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442530053.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rong", 
        "givenName": "Dailin", 
        "id": "sg:person.016011352163.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016011352163.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jie", 
        "id": "sg:person.016516604701.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516604701.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Yuanqiang", 
        "id": "sg:person.016352432417.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016352432417.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Linqi", 
        "id": "sg:person.011755534243.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755534243.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Ying", 
        "id": "sg:person.015770371244.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770371244.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.01023412627.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Meng", 
        "id": "sg:person.01042251410.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042251410.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venkatesh", 
        "givenName": "Sudhakar K.", 
        "id": "sg:person.01152463164.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152463164.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ehman", 
        "givenName": "Richard L.", 
        "id": "sg:person.0634643630.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634643630.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People\u2019s Republic Of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jin", 
        "id": "sg:person.016236616374.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236616374.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-011-2220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018175402", 
          "https://doi.org/10.1007/s00330-011-2220-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5638-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105704410", 
          "https://doi.org/10.1007/s00330-018-5638-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-019-06478-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122411452", 
          "https://doi.org/10.1007/s00330-019-06478-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2016.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030586117", 
          "https://doi.org/10.1038/ajg.2016.65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-019-0357-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117981165", 
          "https://doi.org/10.1186/s12880-019-0357-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-03", 
    "datePublishedReg": "2021-06-03", 
    "description": "PurposeTo assess the influence of region of interest (ROI) placement on the predictive value of 3D MRE in differentiating the histologic grade of HCC.Methods85 patients with pathologically confirmed HCCs were analyzed using 3D MRE imaging, two radiologists measured the tumor stiffness with three different ROI positioning methods. Intraclass correlation coefficient (ICC) was expressed in terms of inter- and intra-observer agreements. Kruskal\u2013Wallis rank test or one-way ANOVA was used to compare the difference in MRE stiffness across the three-ROI positioning methods. Receiver operating characteristic curve analysis (ROC) was performed, and the area under curve (AUC) was measured to evaluate the diagnostic performance.ResultsThere were 64 (75%) well-or-moderately differentiated HCCs and 21(25%) poorly differentiated HCCs included finally. Almost excellent inter- and intra-observer agreements (all ICC\u2009>\u20090.82) were observed for all three-ROI methods, the volumetric method has the highest values (inter-observer ICC 0.967, intra-observer ICC 0.919, 0.926, respectively). The mean stiffnesses of poorly differentiated HCC obtained by two readers were significantly higher than well-or-moderately differentiated HCC with volumetric method (7.07\u2009\u00b1\u20091.57 Kpa, 5.00\u2009\u00b1\u20091.49 Kpa, and 6.85\u2009\u00b1\u20091.49 Kpa, 4.94\u2009\u00b1\u20091.48 Kpa, respectively) and three-ROI method (6.14\u2009\u00b1\u20091.71 Kpa, 4.91\u2009\u00b1\u20091.56 Kpa and 5.94\u2009\u00b1\u20091.61 Kpa, 4.84\u2009\u00b1\u20091.54 Kpa, respectively) but not on single-ROI method (p\u2009>\u20090.005), for the diagnostic performance, the highest area under the curve (AUC) with a value of 0.837, 0.812 by using the volumetric method, followed by the three-ROI method (0.713, 0.754) and single-ROI method.ConclusionDifferent ROI positioning methods significantly affect HCC tumor stiffness measurements. The whole tumor volumetric analysis is superior to ROI-based methods for predicting the grade of HCC.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00261-021-03150-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6501418", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "intraclass correlation coefficient", 
      "histologic grade", 
      "intra-observer agreement", 
      "diagnostic performance", 
      "tumor volumetric analysis", 
      "characteristic curve analysis", 
      "Kruskal-Wallis rank test", 
      "single-ROI method", 
      "hepatocellular carcinoma", 
      "predictive value", 
      "HCC", 
      "magnetic resonance elastography", 
      "tumor stiffness", 
      "diagnostic accuracy", 
      "MRE imaging", 
      "curve analysis", 
      "volumetric analysis", 
      "stiffness measurement", 
      "interest placement", 
      "rank test", 
      "one-way ANOVA", 
      "mean stiffness", 
      "resonance elastography", 
      "MRE stiffness", 
      "highest area", 
      "grade", 
      "patients", 
      "region of interest", 
      "ResultsThere", 
      "carcinoma", 
      "PurposeTo", 
      "influence of region", 
      "correlation coefficient", 
      "radiologists", 
      "elastography", 
      "imaging", 
      "placement", 
      "ANOVA", 
      "differences", 
      "stiffness", 
      "test", 
      "curves", 
      "analysis", 
      "area", 
      "volumetric method", 
      "values", 
      "ROI", 
      "method", 
      "region", 
      "higher values", 
      "receiver", 
      "MRE", 
      "comparison", 
      "influence", 
      "measurements", 
      "interest", 
      "terms", 
      "agreement", 
      "readers", 
      "accuracy", 
      "performance", 
      "coefficient", 
      "positioning method"
    ], 
    "name": "Diagnostic accuracy of 3D magnetic resonance elastography for assessing histologic grade of hepatocellular carcinoma: comparison of three methods for positioning region of interest", 
    "pagination": "4601-4609", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138578024"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-021-03150-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34085091"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-021-03150-4", 
      "https://app.dimensions.ai/details/publication/pub.1138578024"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_880.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00261-021-03150-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-03150-4'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      100 URIs      87 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-021-03150-4 schema:about N2019af1f62a64b26bfa7da90e455f9d2
2 N4a56f6478afb49359606b90854a4ae16
3 N5695a7ff376f486487d59b609fe3b1da
4 N9addb5ba468a44efb205fe60c8e35e8d
5 Nac4faeaeb8a84208b2e2f550cb86f99f
6 Nb9ccd7c8f234404a85cd53cc38eb0ea4
7 Nea548000d89e4368823b48d4d4b171a2
8 anzsrc-for:11
9 anzsrc-for:1103
10 schema:author N88564b3e283f4762947837a8dba28e90
11 schema:citation sg:pub.10.1007/s00330-011-2220-5
12 sg:pub.10.1007/s00330-018-5638-1
13 sg:pub.10.1007/s00330-019-06478-0
14 sg:pub.10.1038/ajg.2016.65
15 sg:pub.10.1186/s12880-019-0357-x
16 schema:datePublished 2021-06-03
17 schema:datePublishedReg 2021-06-03
18 schema:description PurposeTo assess the influence of region of interest (ROI) placement on the predictive value of 3D MRE in differentiating the histologic grade of HCC.Methods85 patients with pathologically confirmed HCCs were analyzed using 3D MRE imaging, two radiologists measured the tumor stiffness with three different ROI positioning methods. Intraclass correlation coefficient (ICC) was expressed in terms of inter- and intra-observer agreements. Kruskal–Wallis rank test or one-way ANOVA was used to compare the difference in MRE stiffness across the three-ROI positioning methods. Receiver operating characteristic curve analysis (ROC) was performed, and the area under curve (AUC) was measured to evaluate the diagnostic performance.ResultsThere were 64 (75%) well-or-moderately differentiated HCCs and 21(25%) poorly differentiated HCCs included finally. Almost excellent inter- and intra-observer agreements (all ICC > 0.82) were observed for all three-ROI methods, the volumetric method has the highest values (inter-observer ICC 0.967, intra-observer ICC 0.919, 0.926, respectively). The mean stiffnesses of poorly differentiated HCC obtained by two readers were significantly higher than well-or-moderately differentiated HCC with volumetric method (7.07 ± 1.57 Kpa, 5.00 ± 1.49 Kpa, and 6.85 ± 1.49 Kpa, 4.94 ± 1.48 Kpa, respectively) and three-ROI method (6.14 ± 1.71 Kpa, 4.91 ± 1.56 Kpa and 5.94 ± 1.61 Kpa, 4.84 ± 1.54 Kpa, respectively) but not on single-ROI method (p > 0.005), for the diagnostic performance, the highest area under the curve (AUC) with a value of 0.837, 0.812 by using the volumetric method, followed by the three-ROI method (0.713, 0.754) and single-ROI method.ConclusionDifferent ROI positioning methods significantly affect HCC tumor stiffness measurements. The whole tumor volumetric analysis is superior to ROI-based methods for predicting the grade of HCC.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf N5ba38611a8b0445cadb7c832de6a1abc
22 Neda92954c56849308d29c7ba2be19a9e
23 sg:journal.1297457
24 schema:keywords ANOVA
25 HCC
26 Kruskal-Wallis rank test
27 MRE
28 MRE imaging
29 MRE stiffness
30 PurposeTo
31 ROI
32 ResultsThere
33 accuracy
34 agreement
35 analysis
36 area
37 carcinoma
38 characteristic curve analysis
39 coefficient
40 comparison
41 correlation coefficient
42 curve analysis
43 curves
44 diagnostic accuracy
45 diagnostic performance
46 differences
47 elastography
48 grade
49 hepatocellular carcinoma
50 higher values
51 highest area
52 histologic grade
53 imaging
54 influence
55 influence of region
56 interest
57 interest placement
58 intra-observer agreement
59 intraclass correlation coefficient
60 magnetic resonance elastography
61 mean stiffness
62 measurements
63 method
64 one-way ANOVA
65 patients
66 performance
67 placement
68 positioning method
69 predictive value
70 radiologists
71 rank test
72 readers
73 receiver
74 region
75 region of interest
76 resonance elastography
77 single-ROI method
78 stiffness
79 stiffness measurement
80 terms
81 test
82 tumor stiffness
83 tumor volumetric analysis
84 values
85 volumetric analysis
86 volumetric method
87 schema:name Diagnostic accuracy of 3D magnetic resonance elastography for assessing histologic grade of hepatocellular carcinoma: comparison of three methods for positioning region of interest
88 schema:pagination 4601-4609
89 schema:productId N397eef6551b248cc82ee7591fad0351b
90 N87596fc719c04340ba532935801f1671
91 Nde285d545e9d4060958a406deba993f6
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138578024
93 https://doi.org/10.1007/s00261-021-03150-4
94 schema:sdDatePublished 2022-12-01T06:41
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N3328be6a01df4496adc6b33e2c04b4fa
97 schema:url https://doi.org/10.1007/s00261-021-03150-4
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N2019af1f62a64b26bfa7da90e455f9d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Reproducibility of Results
103 rdf:type schema:DefinedTerm
104 N3328be6a01df4496adc6b33e2c04b4fa schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N34e2d4dab93a44d29d87c3b7eb317a1e rdf:first sg:person.016516604701.16
107 rdf:rest Nbfe580258c6e4428a09fa59cbdbac910
108 N397eef6551b248cc82ee7591fad0351b schema:name pubmed_id
109 schema:value 34085091
110 rdf:type schema:PropertyValue
111 N49316233d58a40a092bf24c9d56f186e rdf:first sg:person.0634643630.59
112 rdf:rest Ncb6681bb5b8a4bdbb935cd0437ad5ac6
113 N4a56f6478afb49359606b90854a4ae16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Carcinoma, Hepatocellular
115 rdf:type schema:DefinedTerm
116 N5695a7ff376f486487d59b609fe3b1da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Elasticity Imaging Techniques
118 rdf:type schema:DefinedTerm
119 N5951459a17c44f2ab0a13554a1e6a3bb rdf:first sg:person.011755534243.57
120 rdf:rest Nc501e8cfe33d45b09e9d95e0d54b68b0
121 N5ba38611a8b0445cadb7c832de6a1abc schema:issueNumber 10
122 rdf:type schema:PublicationIssue
123 N87596fc719c04340ba532935801f1671 schema:name dimensions_id
124 schema:value pub.1138578024
125 rdf:type schema:PropertyValue
126 N88564b3e283f4762947837a8dba28e90 rdf:first sg:person.012442530053.89
127 rdf:rest Na9e715dab0424be597146c5dbba675a6
128 N9addb5ba468a44efb205fe60c8e35e8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Humans
130 rdf:type schema:DefinedTerm
131 Na9e715dab0424be597146c5dbba675a6 rdf:first sg:person.016011352163.91
132 rdf:rest N34e2d4dab93a44d29d87c3b7eb317a1e
133 Nabd1df85897145e1829dba31f2bfa245 rdf:first sg:person.01023412627.52
134 rdf:rest Nd47719cf1bba4953adac4e813f834a0c
135 Nac4faeaeb8a84208b2e2f550cb86f99f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Liver Neoplasms
137 rdf:type schema:DefinedTerm
138 Nb9ccd7c8f234404a85cd53cc38eb0ea4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Retrospective Studies
140 rdf:type schema:DefinedTerm
141 Nbfe580258c6e4428a09fa59cbdbac910 rdf:first sg:person.016352432417.86
142 rdf:rest N5951459a17c44f2ab0a13554a1e6a3bb
143 Nc501e8cfe33d45b09e9d95e0d54b68b0 rdf:first sg:person.015770371244.97
144 rdf:rest Nabd1df85897145e1829dba31f2bfa245
145 Ncb6681bb5b8a4bdbb935cd0437ad5ac6 rdf:first sg:person.016236616374.52
146 rdf:rest rdf:nil
147 Nd47719cf1bba4953adac4e813f834a0c rdf:first sg:person.01042251410.25
148 rdf:rest Neb1d199184584dd98a0100b8fb91ca9a
149 Nde285d545e9d4060958a406deba993f6 schema:name doi
150 schema:value 10.1007/s00261-021-03150-4
151 rdf:type schema:PropertyValue
152 Nea548000d89e4368823b48d4d4b171a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name ROC Curve
154 rdf:type schema:DefinedTerm
155 Neb1d199184584dd98a0100b8fb91ca9a rdf:first sg:person.01152463164.49
156 rdf:rest N49316233d58a40a092bf24c9d56f186e
157 Neda92954c56849308d29c7ba2be19a9e schema:volumeNumber 46
158 rdf:type schema:PublicationVolume
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
163 schema:name Clinical Sciences
164 rdf:type schema:DefinedTerm
165 sg:grant.6501418 http://pending.schema.org/fundedItem sg:pub.10.1007/s00261-021-03150-4
166 rdf:type schema:MonetaryGrant
167 sg:journal.1297457 schema:issn 2366-004X
168 2366-0058
169 schema:name Abdominal Radiology
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
173 schema:familyName Chen
174 schema:givenName Jun
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
176 rdf:type schema:Person
177 sg:person.01042251410.25 schema:affiliation grid-institutes:grid.66875.3a
178 schema:familyName Yin
179 schema:givenName Meng
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042251410.25
181 rdf:type schema:Person
182 sg:person.01152463164.49 schema:affiliation grid-institutes:grid.66875.3a
183 schema:familyName Venkatesh
184 schema:givenName Sudhakar K.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152463164.49
186 rdf:type schema:Person
187 sg:person.011755534243.57 schema:affiliation grid-institutes:grid.12981.33
188 schema:familyName Zhang
189 schema:givenName Linqi
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755534243.57
191 rdf:type schema:Person
192 sg:person.012442530053.89 schema:affiliation grid-institutes:grid.12981.33
193 schema:familyName Liu
194 schema:givenName Weimin
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442530053.89
196 rdf:type schema:Person
197 sg:person.015770371244.97 schema:affiliation grid-institutes:grid.12981.33
198 schema:familyName Deng
199 schema:givenName Ying
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770371244.97
201 rdf:type schema:Person
202 sg:person.016011352163.91 schema:affiliation grid-institutes:grid.12981.33
203 schema:familyName Rong
204 schema:givenName Dailin
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016011352163.91
206 rdf:type schema:Person
207 sg:person.016236616374.52 schema:affiliation grid-institutes:grid.12981.33
208 schema:familyName Wang
209 schema:givenName Jin
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236616374.52
211 rdf:type schema:Person
212 sg:person.016352432417.86 schema:affiliation grid-institutes:grid.12981.33
213 schema:familyName Xiao
214 schema:givenName Yuanqiang
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016352432417.86
216 rdf:type schema:Person
217 sg:person.016516604701.16 schema:affiliation grid-institutes:grid.12981.33
218 schema:familyName Zhu
219 schema:givenName Jie
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516604701.16
221 rdf:type schema:Person
222 sg:person.0634643630.59 schema:affiliation grid-institutes:grid.66875.3a
223 schema:familyName Ehman
224 schema:givenName Richard L.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634643630.59
226 rdf:type schema:Person
227 sg:pub.10.1007/s00330-011-2220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018175402
228 https://doi.org/10.1007/s00330-011-2220-5
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s00330-018-5638-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105704410
231 https://doi.org/10.1007/s00330-018-5638-1
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s00330-019-06478-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122411452
234 https://doi.org/10.1007/s00330-019-06478-0
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/ajg.2016.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030586117
237 https://doi.org/10.1038/ajg.2016.65
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/s12880-019-0357-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1117981165
240 https://doi.org/10.1186/s12880-019-0357-x
241 rdf:type schema:CreativeWork
242 grid-institutes:grid.12981.33 schema:alternateName Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People’s Republic Of China
243 schema:name Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, 510630, Guangzhou, Guangdong, People’s Republic Of China
244 rdf:type schema:Organization
245 grid-institutes:grid.66875.3a schema:alternateName Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
246 schema:name Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...