Evaluation of MR elastography for prediction of lymph node metastasis in prostate cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-03-02

AUTHORS

Bing Hu, Ying Deng, Jingbiao Chen, Sichi Kuang, Wenjie Tang, Bingjun He, Linqi Zhang, Yuanqiang Xiao, Jun Chen, Phillip Rossman, Arvin Arani, Ziying Yin, Kevin J. Glaser, Meng Yin, Sudhakar K. Venkatesh, Richard L. Ehman, Jin Wang

ABSTRACT

PurposeTo assess the relationship between MRE stiffness of prostate cancer (PCa) and the extent of lymph node metastasis (LNM) in patients with PCa undergoing radical prostatectomy (RP) and extended pelvic lymph node dissection (ePLND).MaterialsThe local institutional review board approved this retrospective study. We retrospectively analyzed 49 patients, who had undergone MRE, mpMRI and pelvic MRI on a 3.0 T MRI scanner, with histopathological confirmed PCa after RP (from June 2015 to December 2019). For each patient, preoperative clinical data and characteristics of MRE, mpMRI and pelvic MRI were recorded. Independent-samples t test, univariate and multivariate logistic regression analyses were performed. And receiver operating characteristic (ROC) analysis were performed to compare the diagnostic performances of multivariate models with the Briganti 2019 nomogram.ResultsPCa MRE stiffness and maximum diameter were independent predictors of LNM. When PCa MRE stiffness at 60 Hz (odds ratio [OR] = 20.223, P = 0.013) and maximum diameter (OR = 4.575, P = 0.046) were combined, the sensitivity and specificity were 100% and 91.9% to predict LNM. When PCa MRE stiffness at 90 Hz (OR = 7.920, P = 0.013) and maximum diameter (OR = 2.810, P = 0.045) were combined, the sensitivity and specificity were 100% and 86.5% to predict LNM. The areas under curves (AUCs) of the combinations were higher than the AUC of the Briganti 2019 nomogram (0.982 vs. 0.904, P = 0.040 [60 Hz]; 0.975 vs. 0.904, P = 0.060 [90 Hz], respectively).ConclusionsMRE-based assessment of PCa stiffness may be useful for predicting LNM of PCa preoperatively and noninvasively. More... »

PAGES

3387-3400

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-021-02982-4

DOI

http://dx.doi.org/10.1007/s00261-021-02982-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135850631

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33651125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Node Excision", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bing", 
        "id": "sg:person.01300722224.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300722224.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Ying", 
        "id": "sg:person.015770371244.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770371244.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jingbiao", 
        "id": "sg:person.0754163214.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754163214.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuang", 
        "givenName": "Sichi", 
        "id": "sg:person.01206370303.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206370303.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Wenjie", 
        "id": "sg:person.014105745265.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105745265.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Bingjun", 
        "id": "sg:person.0637734614.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637734614.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Linqi", 
        "id": "sg:person.011755534243.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755534243.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Yuanqiang", 
        "id": "sg:person.016352432417.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016352432417.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.01023412627.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rossman", 
        "givenName": "Phillip", 
        "id": "sg:person.01037052424.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037052424.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arani", 
        "givenName": "Arvin", 
        "id": "sg:person.0751072230.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751072230.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Ziying", 
        "id": "sg:person.01204263721.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204263721.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glaser", 
        "givenName": "Kevin J.", 
        "id": "sg:person.01277355320.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277355320.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Meng", 
        "id": "sg:person.01042251410.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042251410.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venkatesh", 
        "givenName": "Sudhakar K.", 
        "id": "sg:person.01152463164.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152463164.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ehman", 
        "givenName": "Richard L.", 
        "id": "sg:person.0634643630.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634643630.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jin", 
        "id": "sg:person.016236616374.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236616374.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00261-014-0315-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025713216", 
          "https://doi.org/10.1007/s00261-014-0315-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-014-4024-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027600241", 
          "https://doi.org/10.1245/s10434-014-4024-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-03-02", 
    "datePublishedReg": "2021-03-02", 
    "description": "PurposeTo assess the relationship between MRE stiffness of prostate cancer (PCa) and the extent of lymph node metastasis (LNM) in patients with PCa undergoing radical prostatectomy (RP) and extended pelvic lymph node dissection (ePLND).MaterialsThe local institutional review board approved this retrospective study. We retrospectively analyzed 49 patients, who had undergone MRE, mpMRI and pelvic MRI on a 3.0\u00a0T MRI scanner, with histopathological confirmed PCa after RP (from June 2015 to December 2019). For each patient, preoperative clinical data and characteristics of MRE, mpMRI and pelvic MRI were recorded. Independent-samples t test, univariate and multivariate logistic regression analyses were performed. And receiver operating characteristic (ROC) analysis were performed to compare the diagnostic performances of multivariate models with the Briganti 2019 nomogram.ResultsPCa MRE stiffness and maximum diameter were independent predictors of LNM. When PCa MRE stiffness at 60\u00a0Hz (odds ratio [OR]\u2009=\u200920.223, P\u2009=\u20090.013) and maximum diameter (OR\u2009=\u20094.575, P\u2009=\u20090.046) were combined, the sensitivity and specificity were 100% and 91.9% to predict LNM. When PCa MRE stiffness at 90\u00a0Hz (OR\u2009=\u20097.920, P\u2009=\u20090.013) and maximum diameter (OR\u2009=\u20092.810, P\u2009=\u20090.045) were combined, the sensitivity and specificity were 100% and 86.5% to predict LNM. The areas under curves (AUCs) of the combinations were higher than the AUC of the Briganti 2019 nomogram (0.982 vs. 0.904, P\u2009=\u20090.040 [60\u00a0Hz]; 0.975 vs. 0.904, P\u2009=\u20090.060 [90\u00a0Hz], respectively).ConclusionsMRE-based assessment of PCa stiffness may be useful for predicting LNM of PCa preoperatively and noninvasively.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00261-021-02982-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6501418", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "lymph node metastasis", 
      "prostate cancer", 
      "radical prostatectomy", 
      "node metastasis", 
      "pelvic MRI", 
      "pelvic lymph node dissection", 
      "maximum diameter", 
      "MRE stiffness", 
      "lymph node dissection", 
      "preoperative clinical data", 
      "logistic regression analysis", 
      "local institutional review board", 
      "institutional review board", 
      "node dissection", 
      "independent predictors", 
      "retrospective study", 
      "clinical data", 
      "T MRI scanner", 
      "independent sample t-test", 
      "review board", 
      "multivariate model", 
      "diagnostic performance", 
      "patients", 
      "t-test", 
      "regression analysis", 
      "metastasis", 
      "MR elastography", 
      "cancer", 
      "nomogram", 
      "MRI", 
      "MRI scanner", 
      "characteristic analysis", 
      "prostatectomy", 
      "PurposeTo", 
      "ConclusionsMRE", 
      "specificity", 
      "dissection", 
      "AUC", 
      "predictors", 
      "elastography", 
      "sensitivity", 
      "assessment", 
      "evaluation", 
      "stiffness", 
      "diameter", 
      "study", 
      "MRE", 
      "test", 
      "Hz", 
      "analysis", 
      "scanner", 
      "combination", 
      "extent", 
      "data", 
      "relationship", 
      "receiver", 
      "curves", 
      "area", 
      "characteristics", 
      "model", 
      "board", 
      "prediction", 
      "performance"
    ], 
    "name": "Evaluation of MR elastography for prediction of lymph node metastasis in prostate cancer", 
    "pagination": "3387-3400", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135850631"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-021-02982-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33651125"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-021-02982-4", 
      "https://app.dimensions.ai/details/publication/pub.1135850631"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_909.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00261-021-02982-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-02982-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-02982-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-02982-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-021-02982-4'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      101 URIs      91 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-021-02982-4 schema:about N035b7135c49343c2ac9d2a2dc3eeded6
2 N1a6b067171d2423a8d18e72e0e199f3e
3 N3beb68d81f01431da8f749b08b7cbeaf
4 N6495576b4ab4421eb76dbac3c5447b02
5 N7719e159770b463d9b743283917710f6
6 N85984cba81ea417ea1230fb7e27ed357
7 N9b46b11c5afd49388a230c0706b7be22
8 Na320d4dcc839466192a9d820e62c58b7
9 Nb14324293d44430b977d599fd33e1cec
10 Nbf55ac0705574262a5254ed5bc1becb6
11 Ndf0ee8c2743b4188b6e07cdbcb5935ec
12 anzsrc-for:11
13 anzsrc-for:1112
14 schema:author Nfcb9d40bb9dc4ca4ace3ecc7348df572
15 schema:citation sg:pub.10.1007/s00261-014-0315-6
16 sg:pub.10.1245/s10434-014-4024-8
17 schema:datePublished 2021-03-02
18 schema:datePublishedReg 2021-03-02
19 schema:description PurposeTo assess the relationship between MRE stiffness of prostate cancer (PCa) and the extent of lymph node metastasis (LNM) in patients with PCa undergoing radical prostatectomy (RP) and extended pelvic lymph node dissection (ePLND).MaterialsThe local institutional review board approved this retrospective study. We retrospectively analyzed 49 patients, who had undergone MRE, mpMRI and pelvic MRI on a 3.0 T MRI scanner, with histopathological confirmed PCa after RP (from June 2015 to December 2019). For each patient, preoperative clinical data and characteristics of MRE, mpMRI and pelvic MRI were recorded. Independent-samples t test, univariate and multivariate logistic regression analyses were performed. And receiver operating characteristic (ROC) analysis were performed to compare the diagnostic performances of multivariate models with the Briganti 2019 nomogram.ResultsPCa MRE stiffness and maximum diameter were independent predictors of LNM. When PCa MRE stiffness at 60 Hz (odds ratio [OR] = 20.223, P = 0.013) and maximum diameter (OR = 4.575, P = 0.046) were combined, the sensitivity and specificity were 100% and 91.9% to predict LNM. When PCa MRE stiffness at 90 Hz (OR = 7.920, P = 0.013) and maximum diameter (OR = 2.810, P = 0.045) were combined, the sensitivity and specificity were 100% and 86.5% to predict LNM. The areas under curves (AUCs) of the combinations were higher than the AUC of the Briganti 2019 nomogram (0.982 vs. 0.904, P = 0.040 [60 Hz]; 0.975 vs. 0.904, P = 0.060 [90 Hz], respectively).ConclusionsMRE-based assessment of PCa stiffness may be useful for predicting LNM of PCa preoperatively and noninvasively.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N321072d8c0724c2e95dfec17d38f12c1
23 Nbd8f4b9497204c3f85460eb32a6f64d5
24 sg:journal.1297457
25 schema:keywords AUC
26 ConclusionsMRE
27 Hz
28 MR elastography
29 MRE
30 MRE stiffness
31 MRI
32 MRI scanner
33 PurposeTo
34 T MRI scanner
35 analysis
36 area
37 assessment
38 board
39 cancer
40 characteristic analysis
41 characteristics
42 clinical data
43 combination
44 curves
45 data
46 diagnostic performance
47 diameter
48 dissection
49 elastography
50 evaluation
51 extent
52 independent predictors
53 independent sample t-test
54 institutional review board
55 local institutional review board
56 logistic regression analysis
57 lymph node dissection
58 lymph node metastasis
59 maximum diameter
60 metastasis
61 model
62 multivariate model
63 node dissection
64 node metastasis
65 nomogram
66 patients
67 pelvic MRI
68 pelvic lymph node dissection
69 performance
70 prediction
71 predictors
72 preoperative clinical data
73 prostate cancer
74 prostatectomy
75 radical prostatectomy
76 receiver
77 regression analysis
78 relationship
79 retrospective study
80 review board
81 scanner
82 sensitivity
83 specificity
84 stiffness
85 study
86 t-test
87 test
88 schema:name Evaluation of MR elastography for prediction of lymph node metastasis in prostate cancer
89 schema:pagination 3387-3400
90 schema:productId N242e07afe237468db293290fd47535f7
91 N4de0c2f8dff94b5795cc8d78e7f01951
92 Na2ca3753e12547359762b64f7ad00d12
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135850631
94 https://doi.org/10.1007/s00261-021-02982-4
95 schema:sdDatePublished 2022-09-02T16:06
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher Nc16918f0de3b4f5ca9de4dce2e777a09
98 schema:url https://doi.org/10.1007/s00261-021-02982-4
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N001c42080ebf431980a1e397a7523c29 rdf:first sg:person.01204263721.25
103 rdf:rest N0881a3c994954fefa6700642b9616545
104 N035b7135c49343c2ac9d2a2dc3eeded6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Elasticity Imaging Techniques
106 rdf:type schema:DefinedTerm
107 N0881a3c994954fefa6700642b9616545 rdf:first sg:person.01277355320.27
108 rdf:rest N29a33f9ad4d2486db5f5362cf9300964
109 N0ffd8ec687e249a2884a77e1ba555998 rdf:first sg:person.0634643630.59
110 rdf:rest Nd5fdd408d24344f68cda9a6e236f8b2a
111 N1a6b067171d2423a8d18e72e0e199f3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Predictive Value of Tests
113 rdf:type schema:DefinedTerm
114 N242e07afe237468db293290fd47535f7 schema:name dimensions_id
115 schema:value pub.1135850631
116 rdf:type schema:PropertyValue
117 N276cc5ea30464fd1bc701c14349290da rdf:first sg:person.016352432417.86
118 rdf:rest N6926749f9784457cbddc9114db79c2fc
119 N29a33f9ad4d2486db5f5362cf9300964 rdf:first sg:person.01042251410.25
120 rdf:rest N2cc29393df30483a9a7f602440965293
121 N2cc29393df30483a9a7f602440965293 rdf:first sg:person.01152463164.49
122 rdf:rest N0ffd8ec687e249a2884a77e1ba555998
123 N321072d8c0724c2e95dfec17d38f12c1 schema:issueNumber 7
124 rdf:type schema:PublicationIssue
125 N33a54ff67eb14ee284c4b3d826b6f315 rdf:first sg:person.01037052424.16
126 rdf:rest Nb0291a8d64354928a7d715dfb05ba5df
127 N3beb68d81f01431da8f749b08b7cbeaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Lymphatic Metastasis
129 rdf:type schema:DefinedTerm
130 N3fc66f0884dc4ffd9e890d6c54d9f25c rdf:first sg:person.0637734614.57
131 rdf:rest N6eb39e2ffe304dfd8dc04a3ccfc5c8e7
132 N4de0c2f8dff94b5795cc8d78e7f01951 schema:name pubmed_id
133 schema:value 33651125
134 rdf:type schema:PropertyValue
135 N6495576b4ab4421eb76dbac3c5447b02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Prostatectomy
137 rdf:type schema:DefinedTerm
138 N6890d870cf0b4a3d85363f1b7489a7b3 rdf:first sg:person.0754163214.38
139 rdf:rest Nbe94024c58414520b05ac719d12b237c
140 N6926749f9784457cbddc9114db79c2fc rdf:first sg:person.01023412627.52
141 rdf:rest N33a54ff67eb14ee284c4b3d826b6f315
142 N6eb39e2ffe304dfd8dc04a3ccfc5c8e7 rdf:first sg:person.011755534243.57
143 rdf:rest N276cc5ea30464fd1bc701c14349290da
144 N7719e159770b463d9b743283917710f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 N85984cba81ea417ea1230fb7e27ed357 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Magnetic Resonance Imaging
149 rdf:type schema:DefinedTerm
150 N9b46b11c5afd49388a230c0706b7be22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Lymph Nodes
152 rdf:type schema:DefinedTerm
153 Na2ca3753e12547359762b64f7ad00d12 schema:name doi
154 schema:value 10.1007/s00261-021-02982-4
155 rdf:type schema:PropertyValue
156 Na320d4dcc839466192a9d820e62c58b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Male
158 rdf:type schema:DefinedTerm
159 Nb0291a8d64354928a7d715dfb05ba5df rdf:first sg:person.0751072230.93
160 rdf:rest N001c42080ebf431980a1e397a7523c29
161 Nb14324293d44430b977d599fd33e1cec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Retrospective Studies
163 rdf:type schema:DefinedTerm
164 Nbd8f4b9497204c3f85460eb32a6f64d5 schema:volumeNumber 46
165 rdf:type schema:PublicationVolume
166 Nbe94024c58414520b05ac719d12b237c rdf:first sg:person.01206370303.34
167 rdf:rest Ne9fef8acd1684d169078e99156e8b11a
168 Nbf55ac0705574262a5254ed5bc1becb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Prostatic Neoplasms
170 rdf:type schema:DefinedTerm
171 Nc16918f0de3b4f5ca9de4dce2e777a09 schema:name Springer Nature - SN SciGraph project
172 rdf:type schema:Organization
173 Nd17221df6b1847c09692ff46eb9314c6 rdf:first sg:person.015770371244.97
174 rdf:rest N6890d870cf0b4a3d85363f1b7489a7b3
175 Nd5fdd408d24344f68cda9a6e236f8b2a rdf:first sg:person.016236616374.52
176 rdf:rest rdf:nil
177 Ndf0ee8c2743b4188b6e07cdbcb5935ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Lymph Node Excision
179 rdf:type schema:DefinedTerm
180 Ne9fef8acd1684d169078e99156e8b11a rdf:first sg:person.014105745265.41
181 rdf:rest N3fc66f0884dc4ffd9e890d6c54d9f25c
182 Nfcb9d40bb9dc4ca4ace3ecc7348df572 rdf:first sg:person.01300722224.12
183 rdf:rest Nd17221df6b1847c09692ff46eb9314c6
184 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
185 schema:name Medical and Health Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
188 schema:name Oncology and Carcinogenesis
189 rdf:type schema:DefinedTerm
190 sg:grant.6501418 http://pending.schema.org/fundedItem sg:pub.10.1007/s00261-021-02982-4
191 rdf:type schema:MonetaryGrant
192 sg:journal.1297457 schema:issn 2366-004X
193 2366-0058
194 schema:name Abdominal Radiology
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
198 schema:familyName Chen
199 schema:givenName Jun
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
201 rdf:type schema:Person
202 sg:person.01037052424.16 schema:affiliation grid-institutes:grid.66875.3a
203 schema:familyName Rossman
204 schema:givenName Phillip
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037052424.16
206 rdf:type schema:Person
207 sg:person.01042251410.25 schema:affiliation grid-institutes:grid.66875.3a
208 schema:familyName Yin
209 schema:givenName Meng
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042251410.25
211 rdf:type schema:Person
212 sg:person.01152463164.49 schema:affiliation grid-institutes:grid.66875.3a
213 schema:familyName Venkatesh
214 schema:givenName Sudhakar K.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152463164.49
216 rdf:type schema:Person
217 sg:person.011755534243.57 schema:affiliation grid-institutes:grid.12981.33
218 schema:familyName Zhang
219 schema:givenName Linqi
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755534243.57
221 rdf:type schema:Person
222 sg:person.01204263721.25 schema:affiliation grid-institutes:grid.66875.3a
223 schema:familyName Yin
224 schema:givenName Ziying
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204263721.25
226 rdf:type schema:Person
227 sg:person.01206370303.34 schema:affiliation grid-institutes:grid.12981.33
228 schema:familyName Kuang
229 schema:givenName Sichi
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206370303.34
231 rdf:type schema:Person
232 sg:person.01277355320.27 schema:affiliation grid-institutes:grid.66875.3a
233 schema:familyName Glaser
234 schema:givenName Kevin J.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277355320.27
236 rdf:type schema:Person
237 sg:person.01300722224.12 schema:affiliation grid-institutes:grid.12981.33
238 schema:familyName Hu
239 schema:givenName Bing
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300722224.12
241 rdf:type schema:Person
242 sg:person.014105745265.41 schema:affiliation grid-institutes:grid.12981.33
243 schema:familyName Tang
244 schema:givenName Wenjie
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105745265.41
246 rdf:type schema:Person
247 sg:person.015770371244.97 schema:affiliation grid-institutes:grid.12981.33
248 schema:familyName Deng
249 schema:givenName Ying
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770371244.97
251 rdf:type schema:Person
252 sg:person.016236616374.52 schema:affiliation grid-institutes:grid.12981.33
253 schema:familyName Wang
254 schema:givenName Jin
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236616374.52
256 rdf:type schema:Person
257 sg:person.016352432417.86 schema:affiliation grid-institutes:grid.12981.33
258 schema:familyName Xiao
259 schema:givenName Yuanqiang
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016352432417.86
261 rdf:type schema:Person
262 sg:person.0634643630.59 schema:affiliation grid-institutes:grid.66875.3a
263 schema:familyName Ehman
264 schema:givenName Richard L.
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634643630.59
266 rdf:type schema:Person
267 sg:person.0637734614.57 schema:affiliation grid-institutes:grid.12981.33
268 schema:familyName He
269 schema:givenName Bingjun
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637734614.57
271 rdf:type schema:Person
272 sg:person.0751072230.93 schema:affiliation grid-institutes:grid.66875.3a
273 schema:familyName Arani
274 schema:givenName Arvin
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751072230.93
276 rdf:type schema:Person
277 sg:person.0754163214.38 schema:affiliation grid-institutes:grid.12981.33
278 schema:familyName Chen
279 schema:givenName Jingbiao
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754163214.38
281 rdf:type schema:Person
282 sg:pub.10.1007/s00261-014-0315-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025713216
283 https://doi.org/10.1007/s00261-014-0315-6
284 rdf:type schema:CreativeWork
285 sg:pub.10.1245/s10434-014-4024-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027600241
286 https://doi.org/10.1245/s10434-014-4024-8
287 rdf:type schema:CreativeWork
288 grid-institutes:grid.12981.33 schema:alternateName Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People’s Republic of China
289 schema:name Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People’s Republic of China
290 rdf:type schema:Organization
291 grid-institutes:grid.66875.3a schema:alternateName Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
292 schema:name Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...