Automated segmentation and quantification of aortic calcification at abdominal CT: application of a deep learning-based algorithm to a longitudinal screening ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-11

AUTHORS

Peter M Graffy, Jiamin Liu, Stacy O'Connor, Ronald M Summers, Perry J Pickhardt

ABSTRACT

OBJECTIVE: To investigate an automated aortic calcium segmentation and scoring tool at abdominal CT in an adult screening cohort. METHODS: Using instance segmentation with convolutional neural networks (Mask R-CNN), a fully automated vascular calcification algorithm was applied to a data set of 9914 non-contrast CT scans from 9032 consecutive asymptomatic adults (mean age, 57.5 ± 7.8 years; 4467 M/5447F) undergoing colonography screening. Follow-up scans were performed in a subset of 866 individuals (mean interval, 5.4 years). Automated abdominal aortic calcium volume, mass, and Agatston score were assessed. In addition, comparison was made with a separate validated semi-automated approach in a subset of 812 cases. RESULTS: Mean values were significantly higher in males for Agatston score (924.2 ± 2066.2 vs. 564.2 ± 1484.2, p < 0.001), aortic calcium mass (222.2 ± 526.0 mg vs. 144.5 ± 405.4 mg, p < 0.001) and volume (699.4 ± 1552.4 ml vs. 426.9 ± 1115.5 HU, p < 0.001). Overall age-specific Agatston scores increased an average of 10%/year for the entire cohort; males had a larger Agatston score increase between the ages of 40 to 60 than females (91.2% vs. 75.1%, p < 0.001) and had significantly higher mean Agatston scores between ages 50 and 80 (p < 0.001). For the 812-scan subset with both automated and semi-automated methods, median difference in Agatston score was 66.4 with an r2 agreement value of 0.84. Among the 866-patient cohort with longitudinal follow-up, the average Agatston score change was 524.1 ± 1317.5 (median 130.9), reflecting a mean increase of 25.5% (median 73.6%). CONCLUSION: This robust, fully automated abdominal aortic calcification scoring tool allows for both individualized and population-based assessment. Such data could be automatically derived at non-contrast abdominal CT, regardless of the study indication, allowing for opportunistic assessment of cardiovascular risk. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-019-02014-2

DOI

http://dx.doi.org/10.1007/s00261-019-02014-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113378424

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30976827


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "E3/311 Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graffy", 
        "givenName": "Peter M", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiamin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical College of Wisconsin", 
          "id": "https://www.grid.ac/institutes/grid.30760.32", 
          "name": [
            "Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "O'Connor", 
        "givenName": "Stacy", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "E3/311 Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA. ppickhardt2@uwhealth.org."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pickhardt", 
        "givenName": "Perry J", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/archinte.164.12.1285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004336431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1345-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007799084", 
          "https://doi.org/10.1007/s00330-009-1345-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1345-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007799084", 
          "https://doi.org/10.1007/s00330-009-1345-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14797/mdcj-10-3-139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018450347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/1995-705x.185130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019903885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4924500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022828843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfn753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025802440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(03)00673-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028104437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4065/mcp.2009.0620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028591396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamacardio.2016.1326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031588796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199901073400103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033669673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.285.19.2486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033739611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacr.2016.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035954587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2013.284427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045417727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2010.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050126520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2016.08.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052749194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1741826711412039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064069444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1741826711412039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064069444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.2590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.2646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.11.7361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069301976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.11367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.181.3.1810743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-158-8-201304160-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073713575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2017.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083409893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.17.17820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085766885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4244/eij-d-17-00060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086256865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12018-017-9235-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090994529", 
          "https://doi.org/10.1007/s12018-017-9235-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12018-017-9235-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090994529", 
          "https://doi.org/10.1007/s12018-017-9235-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcl.2017.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092132284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13098-017-0285-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092304099", 
          "https://doi.org/10.1186/s13098-017-0285-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2017.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100060307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.3383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100159443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamacardio.2018.0022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101266157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamacardio.2018.0022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101266157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20170968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101634236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2018.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103598126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2018.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103598126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6560/aad9be", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106135349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20180726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109908815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20180726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109908815"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-11", 
    "datePublishedReg": "2019-04-11", 
    "description": "OBJECTIVE: To investigate an automated aortic calcium segmentation and scoring tool at abdominal CT in an adult screening cohort.\nMETHODS: Using instance segmentation with convolutional neural networks (Mask R-CNN), a fully automated vascular calcification algorithm was applied to a data set of 9914 non-contrast CT scans from 9032 consecutive asymptomatic adults (mean age, 57.5\u2009\u00b1\u20097.8\u00a0years; 4467\u00a0M/5447F) undergoing colonography screening. Follow-up scans were performed in a subset of 866 individuals (mean interval, 5.4\u00a0years). Automated abdominal aortic calcium volume, mass, and Agatston score were assessed. In addition, comparison was made with a separate validated semi-automated approach in a subset of 812 cases.\nRESULTS: Mean values were significantly higher in males for Agatston score (924.2\u2009\u00b1\u20092066.2 vs. 564.2\u2009\u00b1\u20091484.2, p\u2009<\u20090.001), aortic calcium mass (222.2\u2009\u00b1\u2009526.0\u00a0mg vs. 144.5\u2009\u00b1\u2009405.4\u00a0mg, p\u2009<\u20090.001) and volume (699.4\u2009\u00b1\u20091552.4\u00a0ml vs. 426.9\u2009\u00b1\u20091115.5 HU, p\u2009<\u20090.001). Overall age-specific Agatston scores increased an average of 10%/year for the entire cohort; males had a larger Agatston score increase between the ages of 40 to 60 than females (91.2% vs. 75.1%, p\u2009<\u20090.001) and had significantly higher mean Agatston scores between ages 50 and 80 (p\u2009<\u20090.001). For the 812-scan subset with both automated and semi-automated methods, median difference in Agatston score was 66.4 with an r2 agreement value of 0.84. Among the 866-patient cohort with longitudinal follow-up, the average Agatston score change was 524.1\u2009\u00b1\u20091317.5 (median 130.9), reflecting a mean increase of 25.5% (median 73.6%).\nCONCLUSION: This robust, fully automated abdominal aortic calcification scoring tool allows for both individualized and population-based assessment. Such data could be automatically derived at non-contrast abdominal CT, regardless of the study indication, allowing for opportunistic assessment of cardiovascular risk.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-019-02014-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Automated segmentation and quantification of aortic calcification at abdominal CT: application of a deep learning-based algorithm to a longitudinal screening cohort.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-019-02014-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113378424"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30976827"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-019-02014-2", 
      "https://app.dimensions.ai/details/publication/pub.1113378424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106831_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00261-019-02014-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-02014-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-02014-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-02014-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-02014-2'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      20 PREDICATES      60 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-019-02014-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N22e9c0b693be468faceed5319a94d091
4 schema:citation sg:pub.10.1007/s00330-009-1345-2
5 sg:pub.10.1007/s12018-017-9235-7
6 sg:pub.10.1186/s13098-017-0285-2
7 https://doi.org/10.1001/archinte.164.12.1285
8 https://doi.org/10.1001/jama.2013.284427
9 https://doi.org/10.1001/jama.285.19.2486
10 https://doi.org/10.1001/jamacardio.2016.1326
11 https://doi.org/10.1001/jamacardio.2018.0022
12 https://doi.org/10.1002/jbmr.3383
13 https://doi.org/10.1016/j.atherosclerosis.2010.11.017
14 https://doi.org/10.1016/j.jacr.2016.02.031
15 https://doi.org/10.1016/j.jcct.2017.01.007
16 https://doi.org/10.1016/j.procs.2016.08.116
17 https://doi.org/10.1016/j.radonc.2018.04.011
18 https://doi.org/10.1016/j.rcl.2017.06.009
19 https://doi.org/10.1016/s1076-6332(03)00673-1
20 https://doi.org/10.1056/nejm199901073400103
21 https://doi.org/10.1088/1361-6560/aad9be
22 https://doi.org/10.1093/ndt/gfn753
23 https://doi.org/10.1109/iccv.2017.322
24 https://doi.org/10.1118/1.4924500
25 https://doi.org/10.1161/cir.0000000000000485
26 https://doi.org/10.1177/1741826711412039
27 https://doi.org/10.1259/bjr.20170968
28 https://doi.org/10.1259/bjr.20180726
29 https://doi.org/10.14797/mdcj-10-3-139
30 https://doi.org/10.2214/ajr.09.2590
31 https://doi.org/10.2214/ajr.09.2646
32 https://doi.org/10.2214/ajr.11.7361
33 https://doi.org/10.2214/ajr.13.11367
34 https://doi.org/10.2214/ajr.17.17820
35 https://doi.org/10.2214/ajr.181.3.1810743
36 https://doi.org/10.4065/mcp.2009.0620
37 https://doi.org/10.4103/1995-705x.185130
38 https://doi.org/10.4244/eij-d-17-00060
39 https://doi.org/10.7326/0003-4819-158-8-201304160-00003
40 schema:datePublished 2019-04-11
41 schema:datePublishedReg 2019-04-11
42 schema:description OBJECTIVE: To investigate an automated aortic calcium segmentation and scoring tool at abdominal CT in an adult screening cohort. METHODS: Using instance segmentation with convolutional neural networks (Mask R-CNN), a fully automated vascular calcification algorithm was applied to a data set of 9914 non-contrast CT scans from 9032 consecutive asymptomatic adults (mean age, 57.5 ± 7.8 years; 4467 M/5447F) undergoing colonography screening. Follow-up scans were performed in a subset of 866 individuals (mean interval, 5.4 years). Automated abdominal aortic calcium volume, mass, and Agatston score were assessed. In addition, comparison was made with a separate validated semi-automated approach in a subset of 812 cases. RESULTS: Mean values were significantly higher in males for Agatston score (924.2 ± 2066.2 vs. 564.2 ± 1484.2, p < 0.001), aortic calcium mass (222.2 ± 526.0 mg vs. 144.5 ± 405.4 mg, p < 0.001) and volume (699.4 ± 1552.4 ml vs. 426.9 ± 1115.5 HU, p < 0.001). Overall age-specific Agatston scores increased an average of 10%/year for the entire cohort; males had a larger Agatston score increase between the ages of 40 to 60 than females (91.2% vs. 75.1%, p < 0.001) and had significantly higher mean Agatston scores between ages 50 and 80 (p < 0.001). For the 812-scan subset with both automated and semi-automated methods, median difference in Agatston score was 66.4 with an r2 agreement value of 0.84. Among the 866-patient cohort with longitudinal follow-up, the average Agatston score change was 524.1 ± 1317.5 (median 130.9), reflecting a mean increase of 25.5% (median 73.6%). CONCLUSION: This robust, fully automated abdominal aortic calcification scoring tool allows for both individualized and population-based assessment. Such data could be automatically derived at non-contrast abdominal CT, regardless of the study indication, allowing for opportunistic assessment of cardiovascular risk.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1297457
47 schema:name Automated segmentation and quantification of aortic calcification at abdominal CT: application of a deep learning-based algorithm to a longitudinal screening cohort.
48 schema:productId N418b4d01f3d5447fbceafa8949980b68
49 N4ac7845644e04d42b1653732dfd90077
50 N68385f5b7984463a98c5b4c320493506
51 Nbb6a1b8d89854dd39550edc60e73d661
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113378424
53 https://doi.org/10.1007/s00261-019-02014-2
54 schema:sdDatePublished 2019-04-16T06:24
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N61082395be3849df869ce5219ecad844
57 schema:url http://link.springer.com/10.1007/s00261-019-02014-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1d64f250bd1548358cde6bacf59ea867 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
62 schema:familyName Summers
63 schema:givenName Ronald M
64 rdf:type schema:Person
65 N22e9c0b693be468faceed5319a94d091 rdf:first Ndf3f00ee4ccc4f50adb4f7abe963f379
66 rdf:rest Nf7bfe06e80a4464aabe56fea14d5fad2
67 N2e01ca45e6b54614886893024ea3f8c2 schema:affiliation https://www.grid.ac/institutes/grid.30760.32
68 schema:familyName O'Connor
69 schema:givenName Stacy
70 rdf:type schema:Person
71 N418b4d01f3d5447fbceafa8949980b68 schema:name doi
72 schema:value 10.1007/s00261-019-02014-2
73 rdf:type schema:PropertyValue
74 N4ac7845644e04d42b1653732dfd90077 schema:name nlm_unique_id
75 schema:value 101674571
76 rdf:type schema:PropertyValue
77 N4be23f9ea6874bdf803df0107d6692ae schema:affiliation https://www.grid.ac/institutes/grid.410305.3
78 schema:familyName Liu
79 schema:givenName Jiamin
80 rdf:type schema:Person
81 N61082395be3849df869ce5219ecad844 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N68385f5b7984463a98c5b4c320493506 schema:name pubmed_id
84 schema:value 30976827
85 rdf:type schema:PropertyValue
86 Nb8c932ff7ee943cea8a3fbc270314ab3 rdf:first N1d64f250bd1548358cde6bacf59ea867
87 rdf:rest Nfcc87c30152f4b358257af8f02bc3643
88 Nbb6a1b8d89854dd39550edc60e73d661 schema:name dimensions_id
89 schema:value pub.1113378424
90 rdf:type schema:PropertyValue
91 Nce9ae29156c14591abe99f18cb00af3a schema:affiliation https://www.grid.ac/institutes/grid.14003.36
92 schema:familyName Pickhardt
93 schema:givenName Perry J
94 rdf:type schema:Person
95 Ndf3f00ee4ccc4f50adb4f7abe963f379 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
96 schema:familyName Graffy
97 schema:givenName Peter M
98 rdf:type schema:Person
99 Nee51dc1ff9fe44c2a37780a472d76cc6 rdf:first N2e01ca45e6b54614886893024ea3f8c2
100 rdf:rest Nb8c932ff7ee943cea8a3fbc270314ab3
101 Nf7bfe06e80a4464aabe56fea14d5fad2 rdf:first N4be23f9ea6874bdf803df0107d6692ae
102 rdf:rest Nee51dc1ff9fe44c2a37780a472d76cc6
103 Nfcc87c30152f4b358257af8f02bc3643 rdf:first Nce9ae29156c14591abe99f18cb00af3a
104 rdf:rest rdf:nil
105 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
106 schema:name Medical and Health Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
109 schema:name Clinical Sciences
110 rdf:type schema:DefinedTerm
111 sg:journal.1297457 schema:issn 2366-004X
112 2366-0058
113 schema:name Abdominal Radiology
114 rdf:type schema:Periodical
115 sg:pub.10.1007/s00330-009-1345-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007799084
116 https://doi.org/10.1007/s00330-009-1345-2
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s12018-017-9235-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090994529
119 https://doi.org/10.1007/s12018-017-9235-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1186/s13098-017-0285-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092304099
122 https://doi.org/10.1186/s13098-017-0285-2
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1001/archinte.164.12.1285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004336431
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1001/jama.2013.284427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045417727
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1001/jama.285.19.2486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033739611
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1001/jamacardio.2016.1326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031588796
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1001/jamacardio.2018.0022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101266157
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/jbmr.3383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100159443
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.atherosclerosis.2010.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050126520
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jacr.2016.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035954587
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jcct.2017.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083409893
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.procs.2016.08.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052749194
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.radonc.2018.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103598126
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.rcl.2017.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092132284
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s1076-6332(03)00673-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028104437
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1056/nejm199901073400103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033669673
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/1361-6560/aad9be schema:sameAs https://app.dimensions.ai/details/publication/pub.1106135349
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/ndt/gfn753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025802440
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/iccv.2017.322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100060307
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1118/1.4924500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022828843
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1161/cir.0000000000000485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079401866
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1177/1741826711412039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064069444
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1259/bjr.20170968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101634236
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1259/bjr.20180726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109908815
167 rdf:type schema:CreativeWork
168 https://doi.org/10.14797/mdcj-10-3-139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018450347
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2214/ajr.09.2590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300148
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2214/ajr.09.2646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300169
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2214/ajr.11.7361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069301976
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2214/ajr.13.11367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303301
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2214/ajr.17.17820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085766885
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2214/ajr.181.3.1810743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325670
181 rdf:type schema:CreativeWork
182 https://doi.org/10.4065/mcp.2009.0620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028591396
183 rdf:type schema:CreativeWork
184 https://doi.org/10.4103/1995-705x.185130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019903885
185 rdf:type schema:CreativeWork
186 https://doi.org/10.4244/eij-d-17-00060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086256865
187 rdf:type schema:CreativeWork
188 https://doi.org/10.7326/0003-4819-158-8-201304160-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073713575
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
191 schema:name E3/311 Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.
192 E3/311 Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA. ppickhardt2@uwhealth.org.
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.30760.32 schema:alternateName Medical College of Wisconsin
195 schema:name Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
198 schema:name Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA.
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...