Gastrointestinal stromal tumor risk classification: spectral CT quantitative parameters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-12

AUTHORS

Xueling Zhang, Liangcai Bai, Dan Wang, Xiaoyu Huang, Jinyan Wei, Wenjuan Zhang, Zhuoli Zhang, Junlin Zhou

ABSTRACT

PurposeTo examine the value of spectral CT quantitative parameters in gastrointestinal stromal tumor (GIST) risk classification.Materials and methodsThis retrospective study was approved by the institutional review board. The requirement for informed consent was signed. The authors evaluated 86 patients (30 high risk, 22 medium risk, 28 low risk, and 6 very low risk; mean age: 59 years [range 19–83 years]) with pathologically confirmed GIST who underwent plain and triple-phase contrast-enhanced CT with spectral CT imaging mode from March 2015 through September 2017, with manual follow-up. Quantitative parameters including the CT value of 70 keV monochromatic images, the slope of spectral curves, and the normalized iodine concentration (NIC) and water (iodine) concentrations were measured and calculated, and conducted a power analysis of the above data.Results(1) The CT values at 70 keV of the high-risk group were higher than the intermediate and low groups in each of the enhanced phases (P ≤ 0.001), no significant differences in the intermediate-risk and low-risk groups were noted (P = 0.874, 0.871, 0.831, respectively). (2) The slope of the spectral curve of the high-risk group was higher than those of the intermediate and low groups in each of the enhanced phases (P ≤ 0.001), and there were no significant differences between the intermediate- and low-risk groups (P = 0.069, 0.466, 0.840, respectively). (3) The NIC of the high-risk group significantly differed from the lower risk groups (P ≤ 0.001). There was also no significant difference observed between the intermediate- and low-risk groups (P = 0.671, 0.457, 0.833, respectively). (4) The power analysis results show that only the low-risk group with delay period is 0.530, the rest groups are all greater than 0.999.ConclusionDual-energy spectral CT with quantitative analysis may help to increase the accuracy in differentiating the pathological risk classification of GIST between high risk and non-high risk, preoperatively. There were limitations for distinguishing the intermediate- and low-risk groups. More... »

PAGES

2329-2336

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-019-01973-w

DOI

http://dx.doi.org/10.1007/s00261-019-01973-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113380436

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30980116


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evaluation Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Stromal Tumors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Tract", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Dual-Energy Scanned Projection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411294.b", 
          "name": [
            "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xueling", 
        "id": "sg:person.016020616632.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016020616632.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411294.b", 
          "name": [
            "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Liangcai", 
        "id": "sg:person.07464742074.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464742074.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411294.b", 
          "name": [
            "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Dan", 
        "id": "sg:person.016616177232.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016616177232.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411294.b", 
          "name": [
            "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Xiaoyu", 
        "id": "sg:person.013035744000.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013035744000.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411294.b", 
          "name": [
            "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Jinyan", 
        "id": "sg:person.013630275232.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013630275232.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411294.b", 
          "name": [
            "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wenjuan", 
        "id": "sg:person.013553211477.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013553211477.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Northwestern University, 60611, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Radiology, Northwestern University, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhuoli", 
        "id": "sg:person.013232656557.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232656557.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "82# Cuiyingmen, Chengguan District, Lanzhou, Gansu, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People\u2019s Republic of China", 
            "82# Cuiyingmen, Chengguan District, Lanzhou, Gansu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Junlin", 
        "id": "sg:person.0771424112.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771424112.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10120-016-0672-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024803088", 
          "https://doi.org/10.1007/s10120-016-0672-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-005-0045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053362132", 
          "https://doi.org/10.1007/s00268-005-0045-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1122-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048716006", 
          "https://doi.org/10.1007/s00330-008-1122-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40336-017-0229-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085133458", 
          "https://doi.org/10.1007/s40336-017-0229-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-12", 
    "datePublishedReg": "2019-04-12", 
    "description": "PurposeTo examine the value of spectral CT quantitative parameters in gastrointestinal stromal tumor (GIST) risk classification.Materials and methodsThis retrospective study was approved by the institutional review board. The requirement for informed consent was signed. The authors evaluated 86 patients (30 high risk, 22 medium risk, 28 low risk, and 6 very low risk; mean age: 59\u00a0years [range 19\u201383\u00a0years]) with pathologically confirmed GIST who underwent plain and triple-phase contrast-enhanced CT with spectral CT imaging mode from March 2015 through September 2017, with manual follow-up. Quantitative parameters including the CT value of 70\u00a0keV monochromatic images, the slope of spectral curves, and the normalized iodine concentration (NIC) and water (iodine) concentrations were measured and calculated, and conducted a power analysis of the above data.Results(1) The CT values at 70\u00a0keV of the high-risk group were higher than the intermediate and low groups in each of the enhanced phases (P\u2009\u2264\u20090.001), no significant differences in the intermediate-risk and low-risk groups were noted (P\u2009=\u20090.874, 0.871, 0.831, respectively). (2) The slope of the spectral curve of the high-risk group was higher than those of the intermediate and low groups in each of the enhanced phases (P\u2009\u2264\u20090.001), and there were no significant differences between the intermediate- and low-risk groups (P\u2009=\u20090.069, 0.466, 0.840, respectively). (3) The NIC of the high-risk group significantly differed from the lower risk groups (P\u2009\u2264\u20090.001). There was also no significant difference observed between the intermediate- and low-risk groups (P\u2009=\u20090.671, 0.457, 0.833, respectively). (4) The power analysis results show that only the low-risk group with delay period is 0.530, the rest groups are all greater than 0.999.ConclusionDual-energy spectral CT with quantitative analysis may help to increase the accuracy in differentiating the pathological risk classification of GIST between high risk and non-high risk, preoperatively. There were limitations for distinguishing the intermediate- and low-risk groups.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00261-019-01973-w", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5504653", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "low-risk group", 
      "high-risk group", 
      "normalized iodine concentration", 
      "CT quantitative parameters", 
      "tumor risk classification", 
      "risk classification", 
      "significant differences", 
      "contrast-enhanced CT", 
      "non-high risk", 
      "institutional review board", 
      "low group", 
      "retrospective study", 
      "CT values", 
      "risk groups", 
      "high risk", 
      "review board", 
      "informed consent", 
      "rest group", 
      "quantitative parameters", 
      "triple-phase contrast-enhanced CT", 
      "CT", 
      "iodine concentration", 
      "spectral CT", 
      "group", 
      "risk", 
      "above data", 
      "patients", 
      "PurposeTo", 
      "differences", 
      "delay period", 
      "keV monochromatic images", 
      "consent", 
      "concentration", 
      "gist", 
      "classification", 
      "study", 
      "period", 
      "quantitative analysis", 
      "curves", 
      "power analysis", 
      "analysis", 
      "values", 
      "monochromatic images", 
      "data", 
      "authors", 
      "results", 
      "limitations", 
      "parameters", 
      "phase", 
      "board", 
      "materials", 
      "slope", 
      "intermediates", 
      "images", 
      "accuracy", 
      "requirements", 
      "analysis results", 
      "mode", 
      "power analysis results", 
      "water concentration", 
      "spectral curves", 
      "keV"
    ], 
    "name": "Gastrointestinal stromal tumor risk classification: spectral CT quantitative parameters", 
    "pagination": "2329-2336", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113380436"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-019-01973-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30980116"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-019-01973-w", 
      "https://app.dimensions.ai/details/publication/pub.1113380436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_807.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00261-019-01973-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01973-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01973-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01973-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01973-w'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      21 PREDICATES      110 URIs      98 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-019-01973-w schema:about N08af8e33cd964557b5b4e4078450dd2a
2 N15722ebb62064e01922961056c3e1cab
3 N382ad09396f346b6b19f98cfb93195ab
4 N3b6b48b20d6e4f31b26a973f73e023f9
5 N47589207b85a4a0783d157edad91568c
6 N49fbbcafdb15458886c7b6f5697519df
7 N64cc47c59db448bf8399a9cf6a425861
8 N6641f48b6ec74c2b854def1a99e50abe
9 N66c4059b2fca499c956dcc8b4d446538
10 N781e3a5bd12648338bd71c82c9548d56
11 N8a4ff04b742a417fa8cfd5116dbe9d73
12 N990b799a2392443a8e3e0ecd3f6321d3
13 Nc5d3e1ea5db14158b84fd2e796b6e900
14 Nd26424dcc40844739bc2c5c4f0084f12
15 Nd60572bee2cf4e5a8ef4dd47f18d3fe0
16 Ne010f208f3c8449cbdc9a6c9072941c5
17 Nf804e5939d004576a4f6a87aa2338d24
18 Nfa41884518d84f5e83a12fe6b3ecd658
19 Nfab39b47642344ecaee664edb6d7fd19
20 anzsrc-for:11
21 anzsrc-for:1112
22 schema:author N3de7cd6c00af43c38b3426ab6d30d791
23 schema:citation sg:pub.10.1007/s00268-005-0045-6
24 sg:pub.10.1007/s00330-008-1122-7
25 sg:pub.10.1007/s10120-016-0672-7
26 sg:pub.10.1007/s40336-017-0229-8
27 schema:datePublished 2019-04-12
28 schema:datePublishedReg 2019-04-12
29 schema:description PurposeTo examine the value of spectral CT quantitative parameters in gastrointestinal stromal tumor (GIST) risk classification.Materials and methodsThis retrospective study was approved by the institutional review board. The requirement for informed consent was signed. The authors evaluated 86 patients (30 high risk, 22 medium risk, 28 low risk, and 6 very low risk; mean age: 59 years [range 19–83 years]) with pathologically confirmed GIST who underwent plain and triple-phase contrast-enhanced CT with spectral CT imaging mode from March 2015 through September 2017, with manual follow-up. Quantitative parameters including the CT value of 70 keV monochromatic images, the slope of spectral curves, and the normalized iodine concentration (NIC) and water (iodine) concentrations were measured and calculated, and conducted a power analysis of the above data.Results(1) The CT values at 70 keV of the high-risk group were higher than the intermediate and low groups in each of the enhanced phases (P ≤ 0.001), no significant differences in the intermediate-risk and low-risk groups were noted (P = 0.874, 0.871, 0.831, respectively). (2) The slope of the spectral curve of the high-risk group was higher than those of the intermediate and low groups in each of the enhanced phases (P ≤ 0.001), and there were no significant differences between the intermediate- and low-risk groups (P = 0.069, 0.466, 0.840, respectively). (3) The NIC of the high-risk group significantly differed from the lower risk groups (P ≤ 0.001). There was also no significant difference observed between the intermediate- and low-risk groups (P = 0.671, 0.457, 0.833, respectively). (4) The power analysis results show that only the low-risk group with delay period is 0.530, the rest groups are all greater than 0.999.ConclusionDual-energy spectral CT with quantitative analysis may help to increase the accuracy in differentiating the pathological risk classification of GIST between high risk and non-high risk, preoperatively. There were limitations for distinguishing the intermediate- and low-risk groups.
30 schema:genre article
31 schema:isAccessibleForFree false
32 schema:isPartOf Nf487cd8c9f79442a9352094679808265
33 Nfcad8a98ab314c2b9c16945c84b0c559
34 sg:journal.1297457
35 schema:keywords CT
36 CT quantitative parameters
37 CT values
38 PurposeTo
39 above data
40 accuracy
41 analysis
42 analysis results
43 authors
44 board
45 classification
46 concentration
47 consent
48 contrast-enhanced CT
49 curves
50 data
51 delay period
52 differences
53 gist
54 group
55 high risk
56 high-risk group
57 images
58 informed consent
59 institutional review board
60 intermediates
61 iodine concentration
62 keV
63 keV monochromatic images
64 limitations
65 low group
66 low-risk group
67 materials
68 mode
69 monochromatic images
70 non-high risk
71 normalized iodine concentration
72 parameters
73 patients
74 period
75 phase
76 power analysis
77 power analysis results
78 quantitative analysis
79 quantitative parameters
80 requirements
81 rest group
82 results
83 retrospective study
84 review board
85 risk
86 risk classification
87 risk groups
88 significant differences
89 slope
90 spectral CT
91 spectral curves
92 study
93 triple-phase contrast-enhanced CT
94 tumor risk classification
95 values
96 water concentration
97 schema:name Gastrointestinal stromal tumor risk classification: spectral CT quantitative parameters
98 schema:pagination 2329-2336
99 schema:productId Nc77e672b39d6403da874322f2ee3d2c3
100 Ncd7b401e230947a3b382e89fd3395051
101 Nefcaa063357645f1ba9f0bccf513bf74
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113380436
103 https://doi.org/10.1007/s00261-019-01973-w
104 schema:sdDatePublished 2022-09-02T16:04
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N01e28d7106364314b1461210ffcfa9f2
107 schema:url https://doi.org/10.1007/s00261-019-01973-w
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N01e28d7106364314b1461210ffcfa9f2 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N08af8e33cd964557b5b4e4078450dd2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Middle Aged
115 rdf:type schema:DefinedTerm
116 N0ce611c7b1e0480c81ed5416c36bcb6f rdf:first sg:person.016616177232.48
117 rdf:rest N9c5b3baddb034025bb876335f2652f38
118 N15722ebb62064e01922961056c3e1cab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Humans
120 rdf:type schema:DefinedTerm
121 N3456602ed67c47af8c96e1f3ef422d14 rdf:first sg:person.013630275232.54
122 rdf:rest N962548b30ca441cebe5770c4da355231
123 N382ad09396f346b6b19f98cfb93195ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Evaluation Studies as Topic
125 rdf:type schema:DefinedTerm
126 N3b6b48b20d6e4f31b26a973f73e023f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Diagnosis, Differential
128 rdf:type schema:DefinedTerm
129 N3de7cd6c00af43c38b3426ab6d30d791 rdf:first sg:person.016020616632.81
130 rdf:rest N5aa3cef3a6a3489184a936ce708f196e
131 N47589207b85a4a0783d157edad91568c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Radiographic Image Enhancement
133 rdf:type schema:DefinedTerm
134 N49fbbcafdb15458886c7b6f5697519df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Sensitivity and Specificity
136 rdf:type schema:DefinedTerm
137 N5aa3cef3a6a3489184a936ce708f196e rdf:first sg:person.07464742074.80
138 rdf:rest N0ce611c7b1e0480c81ed5416c36bcb6f
139 N64cc47c59db448bf8399a9cf6a425861 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Young Adult
141 rdf:type schema:DefinedTerm
142 N6641f48b6ec74c2b854def1a99e50abe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Tomography, X-Ray Computed
144 rdf:type schema:DefinedTerm
145 N66c4059b2fca499c956dcc8b4d446538 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Risk Assessment
147 rdf:type schema:DefinedTerm
148 N781e3a5bd12648338bd71c82c9548d56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Contrast Media
150 rdf:type schema:DefinedTerm
151 N8a4ff04b742a417fa8cfd5116dbe9d73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Male
153 rdf:type schema:DefinedTerm
154 N962548b30ca441cebe5770c4da355231 rdf:first sg:person.013553211477.15
155 rdf:rest Ndbdf37cbfc044b52ac689715963b1642
156 N990b799a2392443a8e3e0ecd3f6321d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Female
158 rdf:type schema:DefinedTerm
159 N9c5b3baddb034025bb876335f2652f38 rdf:first sg:person.013035744000.22
160 rdf:rest N3456602ed67c47af8c96e1f3ef422d14
161 Nc5d3e1ea5db14158b84fd2e796b6e900 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Aged
163 rdf:type schema:DefinedTerm
164 Nc77e672b39d6403da874322f2ee3d2c3 schema:name pubmed_id
165 schema:value 30980116
166 rdf:type schema:PropertyValue
167 Ncd7b401e230947a3b382e89fd3395051 schema:name doi
168 schema:value 10.1007/s00261-019-01973-w
169 rdf:type schema:PropertyValue
170 Nd26424dcc40844739bc2c5c4f0084f12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Retrospective Studies
172 rdf:type schema:DefinedTerm
173 Nd60572bee2cf4e5a8ef4dd47f18d3fe0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Gastrointestinal Tract
175 rdf:type schema:DefinedTerm
176 Ndbdf37cbfc044b52ac689715963b1642 rdf:first sg:person.013232656557.16
177 rdf:rest Neb60601b3dbc4f9094c28b4226b59fa4
178 Ne010f208f3c8449cbdc9a6c9072941c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Radiography, Dual-Energy Scanned Projection
180 rdf:type schema:DefinedTerm
181 Neb60601b3dbc4f9094c28b4226b59fa4 rdf:first sg:person.0771424112.56
182 rdf:rest rdf:nil
183 Nefcaa063357645f1ba9f0bccf513bf74 schema:name dimensions_id
184 schema:value pub.1113380436
185 rdf:type schema:PropertyValue
186 Nf487cd8c9f79442a9352094679808265 schema:issueNumber 7
187 rdf:type schema:PublicationIssue
188 Nf804e5939d004576a4f6a87aa2338d24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Gastrointestinal Stromal Tumors
190 rdf:type schema:DefinedTerm
191 Nfa41884518d84f5e83a12fe6b3ecd658 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Adult
193 rdf:type schema:DefinedTerm
194 Nfab39b47642344ecaee664edb6d7fd19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Aged, 80 and over
196 rdf:type schema:DefinedTerm
197 Nfcad8a98ab314c2b9c16945c84b0c559 schema:volumeNumber 44
198 rdf:type schema:PublicationVolume
199 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
200 schema:name Medical and Health Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
203 schema:name Oncology and Carcinogenesis
204 rdf:type schema:DefinedTerm
205 sg:grant.5504653 http://pending.schema.org/fundedItem sg:pub.10.1007/s00261-019-01973-w
206 rdf:type schema:MonetaryGrant
207 sg:journal.1297457 schema:issn 2366-004X
208 2366-0058
209 schema:name Abdominal Radiology
210 schema:publisher Springer Nature
211 rdf:type schema:Periodical
212 sg:person.013035744000.22 schema:affiliation grid-institutes:grid.411294.b
213 schema:familyName Huang
214 schema:givenName Xiaoyu
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013035744000.22
216 rdf:type schema:Person
217 sg:person.013232656557.16 schema:affiliation grid-institutes:grid.16753.36
218 schema:familyName Zhang
219 schema:givenName Zhuoli
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232656557.16
221 rdf:type schema:Person
222 sg:person.013553211477.15 schema:affiliation grid-institutes:grid.411294.b
223 schema:familyName Zhang
224 schema:givenName Wenjuan
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013553211477.15
226 rdf:type schema:Person
227 sg:person.013630275232.54 schema:affiliation grid-institutes:grid.411294.b
228 schema:familyName Wei
229 schema:givenName Jinyan
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013630275232.54
231 rdf:type schema:Person
232 sg:person.016020616632.81 schema:affiliation grid-institutes:grid.411294.b
233 schema:familyName Zhang
234 schema:givenName Xueling
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016020616632.81
236 rdf:type schema:Person
237 sg:person.016616177232.48 schema:affiliation grid-institutes:grid.411294.b
238 schema:familyName Wang
239 schema:givenName Dan
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016616177232.48
241 rdf:type schema:Person
242 sg:person.07464742074.80 schema:affiliation grid-institutes:grid.411294.b
243 schema:familyName Bai
244 schema:givenName Liangcai
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464742074.80
246 rdf:type schema:Person
247 sg:person.0771424112.56 schema:affiliation grid-institutes:None
248 schema:familyName Zhou
249 schema:givenName Junlin
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771424112.56
251 rdf:type schema:Person
252 sg:pub.10.1007/s00268-005-0045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053362132
253 https://doi.org/10.1007/s00268-005-0045-6
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/s00330-008-1122-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048716006
256 https://doi.org/10.1007/s00330-008-1122-7
257 rdf:type schema:CreativeWork
258 sg:pub.10.1007/s10120-016-0672-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024803088
259 https://doi.org/10.1007/s10120-016-0672-7
260 rdf:type schema:CreativeWork
261 sg:pub.10.1007/s40336-017-0229-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085133458
262 https://doi.org/10.1007/s40336-017-0229-8
263 rdf:type schema:CreativeWork
264 grid-institutes:None schema:alternateName 82# Cuiyingmen, Chengguan District, Lanzhou, Gansu, People’s Republic of China
265 schema:name 82# Cuiyingmen, Chengguan District, Lanzhou, Gansu, People’s Republic of China
266 Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People’s Republic of China
267 rdf:type schema:Organization
268 grid-institutes:grid.16753.36 schema:alternateName Department of Radiology, Northwestern University, 60611, Chicago, IL, USA
269 schema:name Department of Radiology, Northwestern University, 60611, Chicago, IL, USA
270 rdf:type schema:Organization
271 grid-institutes:grid.411294.b schema:alternateName Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People’s Republic of China
272 schema:name Department of Radiology, Lanzhou University Second Hospital, 730030, Lanzhou, People’s Republic of China
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...