MR elastography of liver at 3 Tesla: comparison of gradient-recalled echo (GRE) and spin-echo (SE) echo-planar imaging (EPI) sequences and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-22

AUTHORS

Chenyang Zhan, Stephan Kannengiesser, Hersh Chandarana, Matthias Fenchel, Justin Ream, Krishna Prasad Shanbhogue

ABSTRACT

PURPOSE: To compare 2D gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) MR elastography (MRE) for measurement of hepatic stiffness in adult patients with known or suspected liver disease at 3 Tesla. MATERIALS AND METHODS: Three hundred and eighty-seven consecutive patients underwent MRE of the liver at 3 Tesla with 2D-GRE and 2D-SE-EPI sequences. 'Mean liver stiffness (LS)' calculated by averaging 3 ROIs in the right lobe, 'Maximum LS' calculated by an ROI in the right lobe; and 'Freehand LS' calculated by an ROI in the entire liver were measured by two independent readers. Inter-observer and inter-class variability in stiffness measurements were assessed. Stiffness values were correlated with degree of liver fibrosis (METAVIR scores) in 97 patients who underwent biopsy. The diagnostic performance was compared by a receiver-operating characteristic analysis. RESULTS: The technical failure rate was 2.8% for 2D-SE-EPI (11/387) and 4.1% for 2D-GRE (16/387, 9 had R2* > 80 s-1 indicating iron overload). There is high reproducibility for both GRE and SE-EPI variants (ICC = 0.84-0.94 for both GRE and SE-EPI MRE). The highest sensitivity, specificity, and accuracy of differentiating mild fibrosis (F0-F2) from advanced fibrosis (F3-F4) are 0.84 (GRE Freehand measurement), 0.92 (GRE Maximum stiffness measurement), and 0.88 (GRE Freehand measurement), respectively. CONCLUSIONS: High intra-class correlation and intra-reader correlation are seen on measured hepatic stiffness for both 2D-GRE and 2D-SE-EPI MRE. 2D-SE-EPI has lower failure rate. Diagnostic performance of both sequences is equivalent, with highest sensitivity for 2D-GRE Freehand stiffness measurement, and highest specificity 2D-GRE Maximum stiffness measurement. More... »

PAGES

1-9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-019-01932-5

DOI

http://dx.doi.org/10.1007/s00261-019-01932-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112305123

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30796479


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Radiology, NYU Langone Health, 660 First Ave, 10016, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Chenyang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens Healthcare GmbH, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kannengiesser", 
        "givenName": "Stephan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Radiology, NYU Langone Health, 660 First Ave, 10016, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandarana", 
        "givenName": "Hersh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthineers, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fenchel", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Radiology, NYU Langone Health, 660 First Ave, 10016, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ream", 
        "givenName": "Justin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Radiology, NYU Langone Health, 660 First Ave, 10016, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shanbhogue", 
        "givenName": "Krishna Prasad", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/hep.23315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000139002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001706589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.21907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007812303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2463/mrms.11.291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010239539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010486666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-015-0373-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016376050", 
          "https://doi.org/10.1007/s00261-015-0373-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cgh.2011.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022777441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024360267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2005.03.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025542377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026396609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.24199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032908435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2011.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033039818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2013.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037670042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.27647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.2958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037850966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2002.06038.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043647579", 
          "https://doi.org/10.1111/j.1572-0241.2002.06038.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200102153440706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044250617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-013-0063-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050481117", 
          "https://doi.org/10.1007/s00261-013-0063-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11101942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051224440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.20466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051636461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7569924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062647554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015142141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079115504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016160153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079313110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016160589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079337027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016160863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079386120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1045-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083400129", 
          "https://doi.org/10.1007/s00261-017-1045-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1045-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083400129", 
          "https://doi.org/10.1007/s00261-017-1045-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4781-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084020742", 
          "https://doi.org/10.1007/s00330-017-4781-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4781-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084020742", 
          "https://doi.org/10.1007/s00330-017-4781-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2018172099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101190649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.3919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104255077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.3919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104255077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.17.19288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105497795"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-22", 
    "datePublishedReg": "2019-02-22", 
    "description": "PURPOSE: To compare 2D gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) MR elastography (MRE) for measurement of hepatic stiffness in adult patients with known or suspected liver disease at 3 Tesla.\nMATERIALS AND METHODS: Three hundred and eighty-seven consecutive patients underwent MRE of the liver at 3 Tesla with 2D-GRE and 2D-SE-EPI sequences. 'Mean liver stiffness (LS)' calculated by averaging 3 ROIs in the right lobe, 'Maximum LS' calculated by an ROI in the right lobe; and 'Freehand LS' calculated by an ROI in the entire liver were measured by two independent readers. Inter-observer and inter-class variability in stiffness measurements were assessed. Stiffness values were correlated with degree of liver fibrosis (METAVIR scores) in 97 patients who underwent biopsy. The diagnostic performance was compared by a receiver-operating characteristic analysis.\nRESULTS: The technical failure rate was 2.8% for 2D-SE-EPI (11/387) and 4.1% for 2D-GRE (16/387, 9 had R2*\u2009>\u200980\u00a0s-1 indicating iron overload). There is high reproducibility for both GRE and SE-EPI variants (ICC\u2009=\u20090.84-0.94 for both GRE and SE-EPI MRE). The highest sensitivity, specificity, and accuracy of differentiating mild fibrosis (F0-F2) from advanced fibrosis (F3-F4) are 0.84 (GRE Freehand measurement), 0.92 (GRE Maximum stiffness measurement), and 0.88 (GRE Freehand measurement), respectively.\nCONCLUSIONS: High intra-class correlation and intra-reader correlation are seen on measured hepatic stiffness for both 2D-GRE and 2D-SE-EPI MRE. 2D-SE-EPI has lower failure rate. Diagnostic performance of both sequences is equivalent, with highest sensitivity for 2D-GRE Freehand stiffness measurement, and highest specificity 2D-GRE Maximum stiffness measurement.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-019-01932-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "MR elastography of liver at 3 Tesla: comparison of gradient-recalled echo (GRE) and spin-echo (SE) echo-planar imaging (EPI) sequences and agreement across stiffness measurements", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f67bcfaacc32c1ea5f49595a74c4b64f7abdd5a8a0b2fb76e306137816b0b31a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30796479"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-019-01932-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112305123"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-019-01932-5", 
      "https://app.dimensions.ai/details/publication/pub.1112305123"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99818_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-019-01932-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01932-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01932-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01932-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01932-5'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      56 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-019-01932-5 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N103b314f7ae14e2088ed7f7f24c25b3c
4 schema:citation sg:pub.10.1007/s00261-013-0063-z
5 sg:pub.10.1007/s00261-015-0373-4
6 sg:pub.10.1007/s00261-017-1045-3
7 sg:pub.10.1007/s00330-017-4781-4
8 sg:pub.10.1111/j.1572-0241.2002.06038.x
9 https://doi.org/10.1002/hep.20466
10 https://doi.org/10.1002/hep.21907
11 https://doi.org/10.1002/hep.23315
12 https://doi.org/10.1002/hep.24199
13 https://doi.org/10.1002/hep.27647
14 https://doi.org/10.1002/jmri.23743
15 https://doi.org/10.1002/jmri.24147
16 https://doi.org/10.1002/mrm.22785
17 https://doi.org/10.1002/nbm.2958
18 https://doi.org/10.1002/nbm.3919
19 https://doi.org/10.1016/j.cgh.2011.03.020
20 https://doi.org/10.1016/j.crad.2011.08.022
21 https://doi.org/10.1016/j.jhep.2013.09.002
22 https://doi.org/10.1016/j.jhep.2016.06.005
23 https://doi.org/10.1053/j.gastro.2005.03.084
24 https://doi.org/10.1056/nejm200102153440706
25 https://doi.org/10.1126/science.7569924
26 https://doi.org/10.1148/radiol.11101942
27 https://doi.org/10.1148/radiol.2015142141
28 https://doi.org/10.1148/radiol.2016160153
29 https://doi.org/10.1148/radiol.2016160589
30 https://doi.org/10.1148/radiol.2016160863
31 https://doi.org/10.1148/radiol.2018172099
32 https://doi.org/10.2214/ajr.17.19288
33 https://doi.org/10.2463/mrms.11.291
34 schema:datePublished 2019-02-22
35 schema:datePublishedReg 2019-02-22
36 schema:description PURPOSE: To compare 2D gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) MR elastography (MRE) for measurement of hepatic stiffness in adult patients with known or suspected liver disease at 3 Tesla. MATERIALS AND METHODS: Three hundred and eighty-seven consecutive patients underwent MRE of the liver at 3 Tesla with 2D-GRE and 2D-SE-EPI sequences. 'Mean liver stiffness (LS)' calculated by averaging 3 ROIs in the right lobe, 'Maximum LS' calculated by an ROI in the right lobe; and 'Freehand LS' calculated by an ROI in the entire liver were measured by two independent readers. Inter-observer and inter-class variability in stiffness measurements were assessed. Stiffness values were correlated with degree of liver fibrosis (METAVIR scores) in 97 patients who underwent biopsy. The diagnostic performance was compared by a receiver-operating characteristic analysis. RESULTS: The technical failure rate was 2.8% for 2D-SE-EPI (11/387) and 4.1% for 2D-GRE (16/387, 9 had R2* > 80 s-1 indicating iron overload). There is high reproducibility for both GRE and SE-EPI variants (ICC = 0.84-0.94 for both GRE and SE-EPI MRE). The highest sensitivity, specificity, and accuracy of differentiating mild fibrosis (F0-F2) from advanced fibrosis (F3-F4) are 0.84 (GRE Freehand measurement), 0.92 (GRE Maximum stiffness measurement), and 0.88 (GRE Freehand measurement), respectively. CONCLUSIONS: High intra-class correlation and intra-reader correlation are seen on measured hepatic stiffness for both 2D-GRE and 2D-SE-EPI MRE. 2D-SE-EPI has lower failure rate. Diagnostic performance of both sequences is equivalent, with highest sensitivity for 2D-GRE Freehand stiffness measurement, and highest specificity 2D-GRE Maximum stiffness measurement.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1297457
41 schema:name MR elastography of liver at 3 Tesla: comparison of gradient-recalled echo (GRE) and spin-echo (SE) echo-planar imaging (EPI) sequences and agreement across stiffness measurements
42 schema:pagination 1-9
43 schema:productId N08fc0d8950c246e497435e8f5bf7fa0c
44 N0983cf6aebda402888016f161e1b6964
45 N430bd9612d5e40dc84715cdb19851758
46 Nc122de91fac04d46ad69ff33ae952355
47 Ne7799f541f274f388844cc85d6dfd8c1
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112305123
49 https://doi.org/10.1007/s00261-019-01932-5
50 schema:sdDatePublished 2019-04-11T09:35
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N28c1d3d017824618960c3a59fdca3263
53 schema:url https://link.springer.com/10.1007%2Fs00261-019-01932-5
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0106ecdf241a4e58980434764d612439 rdf:first N5ce4dae78e81440495304e953d56bb30
58 rdf:rest Nc6c014b9a16f472f944b689ad4ef23cc
59 N08fc0d8950c246e497435e8f5bf7fa0c schema:name doi
60 schema:value 10.1007/s00261-019-01932-5
61 rdf:type schema:PropertyValue
62 N0983cf6aebda402888016f161e1b6964 schema:name readcube_id
63 schema:value f67bcfaacc32c1ea5f49595a74c4b64f7abdd5a8a0b2fb76e306137816b0b31a
64 rdf:type schema:PropertyValue
65 N103b314f7ae14e2088ed7f7f24c25b3c rdf:first N1cacca8ace7e4b5a92dc37d79ee5257c
66 rdf:rest N0106ecdf241a4e58980434764d612439
67 N1cacca8ace7e4b5a92dc37d79ee5257c schema:affiliation https://www.grid.ac/institutes/grid.137628.9
68 schema:familyName Zhan
69 schema:givenName Chenyang
70 rdf:type schema:Person
71 N227a02faf95c4d46aac014072b308109 rdf:first Ndb0faab908a34578ac3870233d28be13
72 rdf:rest N5917a86611b04ff684dbf7bcbb824758
73 N28c1d3d017824618960c3a59fdca3263 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N430bd9612d5e40dc84715cdb19851758 schema:name dimensions_id
76 schema:value pub.1112305123
77 rdf:type schema:PropertyValue
78 N5917a86611b04ff684dbf7bcbb824758 rdf:first N602c7029ffef42a69e2d0591127d1fef
79 rdf:rest Nc4bad16d6b684bafb67921fd50f0329d
80 N5ce4dae78e81440495304e953d56bb30 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
81 schema:familyName Kannengiesser
82 schema:givenName Stephan
83 rdf:type schema:Person
84 N602c7029ffef42a69e2d0591127d1fef schema:affiliation https://www.grid.ac/institutes/grid.137628.9
85 schema:familyName Ream
86 schema:givenName Justin
87 rdf:type schema:Person
88 N6ebfe02aca504a9b9bd0fc2be51b0a63 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
89 schema:familyName Chandarana
90 schema:givenName Hersh
91 rdf:type schema:Person
92 Nc122de91fac04d46ad69ff33ae952355 schema:name nlm_unique_id
93 schema:value 101674571
94 rdf:type schema:PropertyValue
95 Nc4bad16d6b684bafb67921fd50f0329d rdf:first Nf5b99eaa462b4c08aec47858c47c1a81
96 rdf:rest rdf:nil
97 Nc6c014b9a16f472f944b689ad4ef23cc rdf:first N6ebfe02aca504a9b9bd0fc2be51b0a63
98 rdf:rest N227a02faf95c4d46aac014072b308109
99 Ndb0faab908a34578ac3870233d28be13 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
100 schema:familyName Fenchel
101 schema:givenName Matthias
102 rdf:type schema:Person
103 Ne7799f541f274f388844cc85d6dfd8c1 schema:name pubmed_id
104 schema:value 30796479
105 rdf:type schema:PropertyValue
106 Nf5b99eaa462b4c08aec47858c47c1a81 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
107 schema:familyName Shanbhogue
108 schema:givenName Krishna Prasad
109 rdf:type schema:Person
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biomedical Engineering
115 rdf:type schema:DefinedTerm
116 sg:journal.1297457 schema:issn 2366-004X
117 2366-0058
118 schema:name Abdominal Radiology
119 rdf:type schema:Periodical
120 sg:pub.10.1007/s00261-013-0063-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050481117
121 https://doi.org/10.1007/s00261-013-0063-z
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00261-015-0373-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016376050
124 https://doi.org/10.1007/s00261-015-0373-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00261-017-1045-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083400129
127 https://doi.org/10.1007/s00261-017-1045-3
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00330-017-4781-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084020742
130 https://doi.org/10.1007/s00330-017-4781-4
131 rdf:type schema:CreativeWork
132 sg:pub.10.1111/j.1572-0241.2002.06038.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043647579
133 https://doi.org/10.1111/j.1572-0241.2002.06038.x
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/hep.20466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051636461
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/hep.21907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007812303
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/hep.23315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000139002
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/hep.24199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032908435
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/hep.27647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724797
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/jmri.23743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001706589
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/jmri.24147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024360267
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/mrm.22785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010486666
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/nbm.2958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037850966
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/nbm.3919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104255077
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.cgh.2011.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022777441
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.crad.2011.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033039818
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jhep.2013.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037670042
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jhep.2016.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026396609
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1053/j.gastro.2005.03.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025542377
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1056/nejm200102153440706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250617
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.7569924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062647554
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1148/radiol.11101942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051224440
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1148/radiol.2015142141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079115504
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1148/radiol.2016160153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079313110
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1148/radiol.2016160589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079337027
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1148/radiol.2016160863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079386120
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1148/radiol.2018172099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101190649
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2214/ajr.17.19288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105497795
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2463/mrms.11.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010239539
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
186 schema:name Department of Radiology, NYU Langone Health, 660 First Ave, 10016, New York, NY, USA
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
189 schema:name Siemens Healthineers, New York, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
192 schema:name Siemens Healthcare GmbH, Erlangen, Germany
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...