Development and validation of an imaging and clinical scoring system to predict early mortality in spontaneous ruptured hepatocellular carcinoma treated ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Kam-Ho Lee, Man-Lap Donald Tse, Martin Law, Andrew Kai-Chun Cheng, Ho-Yuen Frank Wong, Man-Leung Yu, Yan-Lin Li, Yuen-Chi Ho, Ferdinand Chu, Wendy Wai-Man Lam

ABSTRACT

PURPOSE: To develop and validate a scoring system using a combination of imaging and clinical parameters to predict 30-day mortality in ruptured HCC (rHCC) patients after transarterial embolization (TAE). METHODS: 98 consecutive patients with rHCC who underwent abdominal CT and subsequent TAE between January 2007 and December 2016 were retrospectively reviewed. The CT scans were reviewed by two radiologists blinded to the patient outcome. Clinical parameters including serum bilirubin, albumin, INR, creatinine, and hemoglobin were recorded. Independent risk factors for 30-day mortality after TAE were identified using multivariate binary logistic regression, for development of a scoring system. The scoring system was then validated in 20 patients between January 2017 and May 2018. RESULTS: In the development cohort, bilobar tumor distribution (OR = 29.6), clinical parameters of bilirubin > 2.5 mg/dL (OR = 5.9), and albumin < 30 g/L (OR = 4.1) were independent predictors for 30-day mortality. A 6-point score was derived and yielded area-under-the-receiver-operating-characteristic-curve (AUC) of 0.904. A score ≥ 4 resulted in sensitivity of 80.5% and specificity of 91.2% for 30-day mortality. In the validation cohort, AUC for 30-day mortality was 0.939. A score ≥ 4 resulted in sensitivity of 81.2% and specificity of 88.9%. In both development and validation cohorts, the proposed scoring system was better than biochemical components of Child-Pugh score and serum bilirubin to predict 30-day mortality. CONCLUSION: Imaging and clinical parameters can be combined into a scoring system to accurately predict 30-day mortality after TAE in rHCC patients. The score may help identify and counsel high-risk patients. More... »

PAGES

903-911

Journal

TITLE

Abdominal Radiology

ISSUE

3

VOLUME

44

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-019-01895-7

DOI

http://dx.doi.org/10.1007/s00261-019-01895-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111320032

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30631903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kam-Ho", 
        "id": "sg:person.07472106403.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07472106403.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tse", 
        "givenName": "Man-Lap Donald", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Law", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Andrew Kai-Chun", 
        "id": "sg:person.011514401224.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011514401224.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wong", 
        "givenName": "Ho-Yuen Frank", 
        "id": "sg:person.016175157603.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016175157603.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Man-Leung", 
        "id": "sg:person.012062377563.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062377563.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yan-Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ho", 
        "givenName": "Yuen-Chi", 
        "id": "sg:person.0600650155.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600650155.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Ferdinand", 
        "id": "sg:person.0771166250.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771166250.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415550.0", 
          "name": [
            "Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lam", 
        "givenName": "Wendy Wai-Man", 
        "id": "sg:person.011114422452.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011114422452.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/00000658-198907000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003265265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-198907000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003265265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archsurg.134.10.1103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012819335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-007-9353-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016599077", 
          "https://doi.org/10.1007/s00261-007-9353-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-007-9353-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016599077", 
          "https://doi.org/10.1007/s00261-007-9353-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajem.2005.02.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019979093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.1800600817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028384325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-9260(98)80004-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030160860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/hepr.12498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031321508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0105983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033987819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2016.17.3.339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038197913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.285.23.2987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043181545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2015.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047099608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00534-009-0094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052916125", 
          "https://doi.org/10.1007/s00534-009-0094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00534-009-0094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052916125", 
          "https://doi.org/10.1007/s00534-009-0094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00534-009-0094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052916125", 
          "https://doi.org/10.1007/s00534-009-0094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.74.878.740142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064567233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.3983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2001.19.17.3725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074873328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.180.3.1651524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077197153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077645456", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2010.100369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078383237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2010.100369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078383237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082617931", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-017-4163-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091146570", 
          "https://doi.org/10.1007/s00268-017-4163-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-017-4163-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091146570", 
          "https://doi.org/10.1007/s00268-017-4163-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.24869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092577068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvir.2017.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099673800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-018-0799-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110344750", 
          "https://doi.org/10.1007/s11604-018-0799-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-018-0799-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110344750", 
          "https://doi.org/10.1007/s11604-018-0799-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-018-0799-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110344750", 
          "https://doi.org/10.1007/s11604-018-0799-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-018-0799-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110344750", 
          "https://doi.org/10.1007/s11604-018-0799-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "PURPOSE: To develop and validate a scoring system using a combination of imaging and clinical parameters to predict 30-day mortality in ruptured HCC (rHCC) patients after transarterial embolization (TAE).\nMETHODS: 98 consecutive patients with rHCC who underwent abdominal CT and subsequent TAE between January 2007 and December 2016 were retrospectively reviewed. The CT scans were reviewed by two radiologists blinded to the patient outcome. Clinical parameters including serum bilirubin, albumin, INR, creatinine, and hemoglobin were recorded. Independent risk factors for 30-day mortality after TAE were identified using multivariate binary logistic regression, for development of a scoring system. The scoring system was then validated in 20 patients between January 2017 and May 2018.\nRESULTS: In the development cohort, bilobar tumor distribution (OR\u2009=\u200929.6), clinical parameters of bilirubin\u2009>\u20092.5\u00a0mg/dL (OR\u2009=\u20095.9), and albumin\u2009<\u200930\u00a0g/L (OR\u2009=\u20094.1) were independent predictors for 30-day mortality. A 6-point score was derived and yielded area-under-the-receiver-operating-characteristic-curve (AUC) of 0.904. A score\u2009\u2265\u20094 resulted in sensitivity of 80.5% and specificity of 91.2% for 30-day mortality. In the validation cohort, AUC for 30-day mortality was 0.939. A score\u2009\u2265\u20094 resulted in sensitivity of 81.2% and specificity of 88.9%. In both development and validation cohorts, the proposed scoring system was better than biochemical components of Child-Pugh score and serum bilirubin to predict 30-day mortality.\nCONCLUSION: Imaging and clinical parameters can be combined into a scoring system to accurately predict 30-day mortality after TAE in rHCC patients. The score may help identify and counsel high-risk patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-019-01895-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Development and validation of an imaging and clinical scoring system to predict early mortality in spontaneous ruptured hepatocellular carcinoma treated with transarterial embolization", 
    "pagination": "903-911", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5cf43fd590ef77d4228f0db3e1f38ea7a3d7c57cb004e677dce0da2cc0a1a2d3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30631903"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-019-01895-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111320032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-019-01895-7", 
      "https://app.dimensions.ai/details/publication/pub.1111320032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53999_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-019-01895-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01895-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01895-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01895-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-019-01895-7'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-019-01895-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nbf0183d31716431e83634ad19f8debf5
4 schema:citation sg:pub.10.1007/s00261-007-9353-7
5 sg:pub.10.1007/s00268-017-4163-8
6 sg:pub.10.1007/s00534-009-0094-6
7 sg:pub.10.1007/s11604-018-0799-z
8 https://app.dimensions.ai/details/publication/pub.1077645456
9 https://app.dimensions.ai/details/publication/pub.1082617931
10 https://doi.org/10.1001/archsurg.134.10.1103
11 https://doi.org/10.1001/jama.285.23.2987
12 https://doi.org/10.1002/bjs.1800600817
13 https://doi.org/10.1002/jso.24869
14 https://doi.org/10.1016/j.ajem.2005.02.052
15 https://doi.org/10.1016/j.crad.2015.03.007
16 https://doi.org/10.1016/j.jvir.2017.09.022
17 https://doi.org/10.1016/s0009-9260(98)80004-4
18 https://doi.org/10.1097/00000658-198907000-00004
19 https://doi.org/10.1111/hepr.12498
20 https://doi.org/10.1148/radiology.180.3.1651524
21 https://doi.org/10.1200/jco.2001.19.17.3725
22 https://doi.org/10.1258/ar.2010.100369
23 https://doi.org/10.1259/bjr.74.878.740142
24 https://doi.org/10.1371/journal.pone.0105983
25 https://doi.org/10.2214/ajr.07.3983
26 https://doi.org/10.3348/kjr.2016.17.3.339
27 schema:datePublished 2019-03
28 schema:datePublishedReg 2019-03-01
29 schema:description PURPOSE: To develop and validate a scoring system using a combination of imaging and clinical parameters to predict 30-day mortality in ruptured HCC (rHCC) patients after transarterial embolization (TAE). METHODS: 98 consecutive patients with rHCC who underwent abdominal CT and subsequent TAE between January 2007 and December 2016 were retrospectively reviewed. The CT scans were reviewed by two radiologists blinded to the patient outcome. Clinical parameters including serum bilirubin, albumin, INR, creatinine, and hemoglobin were recorded. Independent risk factors for 30-day mortality after TAE were identified using multivariate binary logistic regression, for development of a scoring system. The scoring system was then validated in 20 patients between January 2017 and May 2018. RESULTS: In the development cohort, bilobar tumor distribution (OR = 29.6), clinical parameters of bilirubin > 2.5 mg/dL (OR = 5.9), and albumin < 30 g/L (OR = 4.1) were independent predictors for 30-day mortality. A 6-point score was derived and yielded area-under-the-receiver-operating-characteristic-curve (AUC) of 0.904. A score ≥ 4 resulted in sensitivity of 80.5% and specificity of 91.2% for 30-day mortality. In the validation cohort, AUC for 30-day mortality was 0.939. A score ≥ 4 resulted in sensitivity of 81.2% and specificity of 88.9%. In both development and validation cohorts, the proposed scoring system was better than biochemical components of Child-Pugh score and serum bilirubin to predict 30-day mortality. CONCLUSION: Imaging and clinical parameters can be combined into a scoring system to accurately predict 30-day mortality after TAE in rHCC patients. The score may help identify and counsel high-risk patients.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N6ae92bccc7d64afdb407cc34bbac2ad6
34 Nbd8cf498cd944132a2091b5e99cf429d
35 sg:journal.1297457
36 schema:name Development and validation of an imaging and clinical scoring system to predict early mortality in spontaneous ruptured hepatocellular carcinoma treated with transarterial embolization
37 schema:pagination 903-911
38 schema:productId N09f3de2051c74ce195d379d103044e0b
39 N10c5727b5582487abc1145bb3eee66a4
40 N2bc0eba009794f41b7a91cf9bd15b07f
41 N5d0d1abfe3fc4f06b57cdb47866e7ece
42 N91b130259b044bb692cfdd9496e8d0ff
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111320032
44 https://doi.org/10.1007/s00261-019-01895-7
45 schema:sdDatePublished 2019-04-11T12:13
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Ndbcf88c20a414a22ba533cba7ed0569e
48 schema:url https://link.springer.com/10.1007%2Fs00261-019-01895-7
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N09f3de2051c74ce195d379d103044e0b schema:name readcube_id
53 schema:value 5cf43fd590ef77d4228f0db3e1f38ea7a3d7c57cb004e677dce0da2cc0a1a2d3
54 rdf:type schema:PropertyValue
55 N10c5727b5582487abc1145bb3eee66a4 schema:name doi
56 schema:value 10.1007/s00261-019-01895-7
57 rdf:type schema:PropertyValue
58 N1d54b40e660b4ac7a374af22d838d9e9 rdf:first sg:person.012062377563.23
59 rdf:rest N7a8cc90334924ae48f7d2060c5311064
60 N2bc0eba009794f41b7a91cf9bd15b07f schema:name pubmed_id
61 schema:value 30631903
62 rdf:type schema:PropertyValue
63 N5d0d1abfe3fc4f06b57cdb47866e7ece schema:name nlm_unique_id
64 schema:value 101674571
65 rdf:type schema:PropertyValue
66 N614a635cddc246a789fb66431722f79d schema:affiliation https://www.grid.ac/institutes/grid.415550.0
67 schema:familyName Tse
68 schema:givenName Man-Lap Donald
69 rdf:type schema:Person
70 N6a7bd48147094f40ab2fb794f0e0d10a rdf:first sg:person.0600650155.07
71 rdf:rest N6d5aef26df124c56bfa6a0fa24b41bf8
72 N6ae92bccc7d64afdb407cc34bbac2ad6 schema:volumeNumber 44
73 rdf:type schema:PublicationVolume
74 N6d5aef26df124c56bfa6a0fa24b41bf8 rdf:first sg:person.0771166250.49
75 rdf:rest Nbaf29375683e470ab1206ec42025f28d
76 N7481809b5d7541028345a4f46bd1ffbc rdf:first Ne743302f2d3a4d2587312c10a79336ef
77 rdf:rest Nf119258d1157465eac3f444a4c9cb044
78 N7a8cc90334924ae48f7d2060c5311064 rdf:first Nb7f6f428bdb64cd6872113eb419f376b
79 rdf:rest N6a7bd48147094f40ab2fb794f0e0d10a
80 N91b130259b044bb692cfdd9496e8d0ff schema:name dimensions_id
81 schema:value pub.1111320032
82 rdf:type schema:PropertyValue
83 N9bf797055ed54eeba37387f3f9690cd7 rdf:first N614a635cddc246a789fb66431722f79d
84 rdf:rest N7481809b5d7541028345a4f46bd1ffbc
85 Na814f22d74f24910b981b96b5906aed1 rdf:first sg:person.016175157603.16
86 rdf:rest N1d54b40e660b4ac7a374af22d838d9e9
87 Nb7f6f428bdb64cd6872113eb419f376b schema:affiliation https://www.grid.ac/institutes/grid.415550.0
88 schema:familyName Li
89 schema:givenName Yan-Lin
90 rdf:type schema:Person
91 Nbaf29375683e470ab1206ec42025f28d rdf:first sg:person.011114422452.13
92 rdf:rest rdf:nil
93 Nbd8cf498cd944132a2091b5e99cf429d schema:issueNumber 3
94 rdf:type schema:PublicationIssue
95 Nbf0183d31716431e83634ad19f8debf5 rdf:first sg:person.07472106403.78
96 rdf:rest N9bf797055ed54eeba37387f3f9690cd7
97 Ndbcf88c20a414a22ba533cba7ed0569e schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Ne743302f2d3a4d2587312c10a79336ef schema:affiliation https://www.grid.ac/institutes/grid.415550.0
100 schema:familyName Law
101 schema:givenName Martin
102 rdf:type schema:Person
103 Nf119258d1157465eac3f444a4c9cb044 rdf:first sg:person.011514401224.95
104 rdf:rest Na814f22d74f24910b981b96b5906aed1
105 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
106 schema:name Medical and Health Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
109 schema:name Clinical Sciences
110 rdf:type schema:DefinedTerm
111 sg:journal.1297457 schema:issn 2366-004X
112 2366-0058
113 schema:name Abdominal Radiology
114 rdf:type schema:Periodical
115 sg:person.011114422452.13 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
116 schema:familyName Lam
117 schema:givenName Wendy Wai-Man
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011114422452.13
119 rdf:type schema:Person
120 sg:person.011514401224.95 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
121 schema:familyName Cheng
122 schema:givenName Andrew Kai-Chun
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011514401224.95
124 rdf:type schema:Person
125 sg:person.012062377563.23 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
126 schema:familyName Yu
127 schema:givenName Man-Leung
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062377563.23
129 rdf:type schema:Person
130 sg:person.016175157603.16 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
131 schema:familyName Wong
132 schema:givenName Ho-Yuen Frank
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016175157603.16
134 rdf:type schema:Person
135 sg:person.0600650155.07 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
136 schema:familyName Ho
137 schema:givenName Yuen-Chi
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600650155.07
139 rdf:type schema:Person
140 sg:person.07472106403.78 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
141 schema:familyName Lee
142 schema:givenName Kam-Ho
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07472106403.78
144 rdf:type schema:Person
145 sg:person.0771166250.49 schema:affiliation https://www.grid.ac/institutes/grid.415550.0
146 schema:familyName Chu
147 schema:givenName Ferdinand
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771166250.49
149 rdf:type schema:Person
150 sg:pub.10.1007/s00261-007-9353-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016599077
151 https://doi.org/10.1007/s00261-007-9353-7
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00268-017-4163-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091146570
154 https://doi.org/10.1007/s00268-017-4163-8
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00534-009-0094-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052916125
157 https://doi.org/10.1007/s00534-009-0094-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s11604-018-0799-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1110344750
160 https://doi.org/10.1007/s11604-018-0799-z
161 rdf:type schema:CreativeWork
162 https://app.dimensions.ai/details/publication/pub.1077645456 schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1082617931 schema:CreativeWork
164 https://doi.org/10.1001/archsurg.134.10.1103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012819335
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1001/jama.285.23.2987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043181545
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/bjs.1800600817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028384325
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jso.24869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092577068
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ajem.2005.02.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019979093
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.crad.2015.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047099608
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.jvir.2017.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099673800
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0009-9260(98)80004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030160860
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1097/00000658-198907000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003265265
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/hepr.12498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031321508
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1148/radiology.180.3.1651524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077197153
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1200/jco.2001.19.17.3725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074873328
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1258/ar.2010.100369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078383237
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1259/bjr.74.878.740142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064567233
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1371/journal.pone.0105983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033987819
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2214/ajr.07.3983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299344
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3348/kjr.2016.17.3.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038197913
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.415550.0 schema:alternateName Queen Mary Hospital
199 schema:name Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, HKSAR, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...