Characteristics of missed prostate cancer lesions on 3T multiparametric-MRI in 518 patients: based on PI-RADSv2 and using whole-mount histopathology reference View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Amirhossein Mohammadian Bajgiran, Sohrab Afshari Mirak, Sepideh Shakeri, Ely R. Felker, Danielle Ponzini, Preeti Ahuja, Anthony E. Sisk, David S. Lu, Steven S. Raman

ABSTRACT

PURPOSE: To determine the characteristics of missed prostate cancer (PCa) lesions on 3T multiparametric-MRI (mpMRI) based on PI-RADSv2 with whole-mount histopathology (WMHP) correlation. MATERIALS AND METHODS: This IRB-approved, HIPAA-compliant study, included 614 consecutive men with 3T mpMRI prior to prostatectomy at a single tertiary center between 12/2009 and 4/2017. Clinical, mpMRI, and pathologic features were obtained. PI-RADSv2-based MRI detected lesions were matched with previously finalized WMHP by a genitourinary (GU) radiologist and a GU pathologist. Patients with no mpMRI detected PCa lesion, but with at least one lesion ≥ 1 cm on WMHP, were reviewed retrospectively and assigned a PI-RADSv2 score. Tumor characteristics were compared between missed and detected lesions. RESULT: The final cohort included 518 patients with 1085 WMHP lesions. 51.9% (563/1085) of lesions were missed on 3T mpMRI. 71.4% (402/563), 21.7% (122/563), 4.4% (25/563), and 2.5% (14/563) of the missed lesions were Gleason scores (GS) 3 + 3, 3 + 4, 4 + 3, and 8 - 10, respectively. Missed PCa lesions had significantly lower proportion of GS ≥ 7 (p < 0.001) and smaller size for overall (p < 0.001) and index subcohorts (p < 0.001), as compared to detected lesions. 34.5% (194) of overall and 71.2% (79) index missed lesions were larger than 1 cm. In 13.7% (71/518) of patients without MR detected PCa, 149 lesions were detected on WMHP, with 70 (47%) lesions ≥ 1 cm. In retrospective review of these lesions, 42.9% (30), 18.6% (13), 21.5% (15), 10% (7), and 7% (5) were PI-RADSv2 1, 2, 3, 4, and 5, respectively. CONCLUSION: 3T mpMRI has an excellent per patients diagnostic performance for PCa and majority of missed lesions are clinically nonsignificant. More... »

PAGES

1052-1061

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-018-1823-6

DOI

http://dx.doi.org/10.1007/s00261-018-1823-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110063137

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30460528


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammadian Bajgiran", 
        "givenName": "Amirhossein", 
        "id": "sg:person.0715213033.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715213033.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Afshari Mirak", 
        "givenName": "Sohrab", 
        "id": "sg:person.0621121110.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621121110.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shakeri", 
        "givenName": "Sepideh", 
        "id": "sg:person.013325716116.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325716116.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Felker", 
        "givenName": "Ely R.", 
        "id": "sg:person.0761573265.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761573265.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ponzini", 
        "givenName": "Danielle", 
        "id": "sg:person.011675636134.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011675636134.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahuja", 
        "givenName": "Preeti", 
        "id": "sg:person.01326157225.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326157225.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sisk", 
        "givenName": "Anthony E.", 
        "id": "sg:person.013157626223.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013157626223.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "David S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raman", 
        "givenName": "Steven S.", 
        "id": "sg:person.014133606277.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133606277.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-015-3894-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001615652", 
          "https://doi.org/10.1007/s00330-015-3894-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urolonc.2011.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023980078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(12)70388-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027767474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pas.0b013e318172ee97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033417669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pas.0b013e318172ee97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033417669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2795-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034542472", 
          "https://doi.org/10.1007/s00330-013-2795-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2377-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041692485", 
          "https://doi.org/10.1007/s00330-011-2377-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-015-0411-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042492707", 
          "https://doi.org/10.1007/s13244-015-0411-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13122233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044629168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0139696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046845476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0139696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046845476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bju.13234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051147550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urolonc.2015.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052121607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053473991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(16)32401-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053755600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21873/anticanres.11045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069267088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.14.13285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5489/cuaj.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072921578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083525890", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.17.17964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092110243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2017152877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092354749"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "PURPOSE: To determine the characteristics of missed prostate cancer (PCa) lesions on 3T multiparametric-MRI (mpMRI) based on PI-RADSv2 with whole-mount histopathology (WMHP) correlation.\nMATERIALS AND METHODS: This IRB-approved, HIPAA-compliant study, included 614 consecutive men with 3T mpMRI prior to prostatectomy at a single tertiary center between 12/2009 and 4/2017. Clinical, mpMRI, and pathologic features were obtained. PI-RADSv2-based MRI detected lesions were matched with previously finalized WMHP by a genitourinary (GU) radiologist and a GU pathologist. Patients with no mpMRI detected PCa lesion, but with at least one lesion\u2009\u2265\u20091\u00a0cm on WMHP, were reviewed retrospectively and assigned a PI-RADSv2 score. Tumor characteristics were compared between missed and detected lesions.\nRESULT: The final cohort included 518 patients with 1085 WMHP lesions. 51.9% (563/1085) of lesions were missed on 3T mpMRI. 71.4% (402/563), 21.7% (122/563), 4.4% (25/563), and 2.5% (14/563) of the missed lesions were Gleason scores (GS) 3\u2009+\u20093, 3\u2009+\u20094, 4\u2009+\u20093, and 8\u2009-\u200910, respectively. Missed PCa lesions had significantly lower proportion of GS\u2009\u2265\u20097 (p\u2009<\u20090.001) and smaller size for overall (p\u2009<\u20090.001) and index subcohorts (p\u2009<\u20090.001), as compared to detected lesions. 34.5% (194) of overall and 71.2% (79) index missed lesions were larger than 1\u00a0cm. In 13.7% (71/518) of patients without MR detected PCa, 149 lesions were detected on WMHP, with 70 (47%) lesions\u2009\u2265\u20091\u00a0cm. In retrospective review of these lesions, 42.9% (30), 18.6% (13), 21.5% (15), 10% (7), and 7% (5) were PI-RADSv2 1, 2, 3, 4, and 5, respectively.\nCONCLUSION: 3T mpMRI has an excellent per patients diagnostic performance for PCa and majority of missed lesions are clinically nonsignificant.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-018-1823-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Characteristics of missed prostate cancer lesions on 3T multiparametric-MRI in 518 patients: based on PI-RADSv2 and using whole-mount histopathology reference", 
    "pagination": "1052-1061", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b3b50e8ca0deacd24c209a25b67944fa967ad940c03fcea0a64088fd545409d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30460528"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-018-1823-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110063137"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-018-1823-6", 
      "https://app.dimensions.ai/details/publication/pub.1110063137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53990_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-018-1823-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1823-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1823-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1823-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1823-6'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      48 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-018-1823-6 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N771812ecbcfa4760a86d734289a5e5bf
4 schema:citation sg:pub.10.1007/s00330-011-2377-y
5 sg:pub.10.1007/s00330-013-2795-0
6 sg:pub.10.1007/s00330-015-3894-x
7 sg:pub.10.1007/s13244-015-0411-3
8 https://app.dimensions.ai/details/publication/pub.1083525890
9 https://doi.org/10.1016/j.urolonc.2011.02.014
10 https://doi.org/10.1016/j.urolonc.2015.08.009
11 https://doi.org/10.1016/s0140-6736(16)32401-1
12 https://doi.org/10.1016/s1470-2045(12)70388-1
13 https://doi.org/10.1097/pas.0b013e318172ee97
14 https://doi.org/10.1111/bju.13234
15 https://doi.org/10.1148/radiol.11110987
16 https://doi.org/10.1148/radiol.13122233
17 https://doi.org/10.1148/radiol.2017152877
18 https://doi.org/10.1371/journal.pone.0139696
19 https://doi.org/10.21873/anticanres.11045
20 https://doi.org/10.2214/ajr.14.13285
21 https://doi.org/10.2214/ajr.17.17964
22 https://doi.org/10.5489/cuaj.80
23 schema:datePublished 2019-03
24 schema:datePublishedReg 2019-03-01
25 schema:description PURPOSE: To determine the characteristics of missed prostate cancer (PCa) lesions on 3T multiparametric-MRI (mpMRI) based on PI-RADSv2 with whole-mount histopathology (WMHP) correlation. MATERIALS AND METHODS: This IRB-approved, HIPAA-compliant study, included 614 consecutive men with 3T mpMRI prior to prostatectomy at a single tertiary center between 12/2009 and 4/2017. Clinical, mpMRI, and pathologic features were obtained. PI-RADSv2-based MRI detected lesions were matched with previously finalized WMHP by a genitourinary (GU) radiologist and a GU pathologist. Patients with no mpMRI detected PCa lesion, but with at least one lesion ≥ 1 cm on WMHP, were reviewed retrospectively and assigned a PI-RADSv2 score. Tumor characteristics were compared between missed and detected lesions. RESULT: The final cohort included 518 patients with 1085 WMHP lesions. 51.9% (563/1085) of lesions were missed on 3T mpMRI. 71.4% (402/563), 21.7% (122/563), 4.4% (25/563), and 2.5% (14/563) of the missed lesions were Gleason scores (GS) 3 + 3, 3 + 4, 4 + 3, and 8 - 10, respectively. Missed PCa lesions had significantly lower proportion of GS ≥ 7 (p < 0.001) and smaller size for overall (p < 0.001) and index subcohorts (p < 0.001), as compared to detected lesions. 34.5% (194) of overall and 71.2% (79) index missed lesions were larger than 1 cm. In 13.7% (71/518) of patients without MR detected PCa, 149 lesions were detected on WMHP, with 70 (47%) lesions ≥ 1 cm. In retrospective review of these lesions, 42.9% (30), 18.6% (13), 21.5% (15), 10% (7), and 7% (5) were PI-RADSv2 1, 2, 3, 4, and 5, respectively. CONCLUSION: 3T mpMRI has an excellent per patients diagnostic performance for PCa and majority of missed lesions are clinically nonsignificant.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N59852bbd25b64f3a807913be8cdcb075
30 Nb497354269df4d67a5035ffa7273d1d8
31 sg:journal.1297457
32 schema:name Characteristics of missed prostate cancer lesions on 3T multiparametric-MRI in 518 patients: based on PI-RADSv2 and using whole-mount histopathology reference
33 schema:pagination 1052-1061
34 schema:productId N634c2b7bbc3a4aa58ac561a655ee85b6
35 Nbd6e33acecee4113957e4aec1f2f2945
36 Nc87d8b10a8b8439cad0d2f9e0052c88e
37 Ndf70b651b05a4c1fb33c8686521f1915
38 Nfe51206b3f0f442587e6ca2f0d7de9b9
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110063137
40 https://doi.org/10.1007/s00261-018-1823-6
41 schema:sdDatePublished 2019-04-11T12:12
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N5b1645a8ad2342e182702bd0807a20ec
44 schema:url https://link.springer.com/10.1007%2Fs00261-018-1823-6
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N1a54bd87174a41ca99323c359ffa686d schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
49 schema:familyName Lu
50 schema:givenName David S.
51 rdf:type schema:Person
52 N346b7cabdff84743af3e39a888f1a887 rdf:first sg:person.0761573265.81
53 rdf:rest Nae0ded63386940c98e7432d68ee701ba
54 N59852bbd25b64f3a807913be8cdcb075 schema:volumeNumber 44
55 rdf:type schema:PublicationVolume
56 N5b1645a8ad2342e182702bd0807a20ec schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N634c2b7bbc3a4aa58ac561a655ee85b6 schema:name doi
59 schema:value 10.1007/s00261-018-1823-6
60 rdf:type schema:PropertyValue
61 N65b323001b9e4418a88bf945d0708fa8 rdf:first sg:person.014133606277.08
62 rdf:rest rdf:nil
63 N771812ecbcfa4760a86d734289a5e5bf rdf:first sg:person.0715213033.18
64 rdf:rest Nf6fac236596c440db474efbd6bdf6e76
65 N7933a07130c7486eb60ed08528ed489c rdf:first sg:person.013157626223.08
66 rdf:rest Nb1a1ad18babb40518e3db16a33c7da10
67 Naad1f679b7c541e08e3c063b26c727dd rdf:first sg:person.013325716116.40
68 rdf:rest N346b7cabdff84743af3e39a888f1a887
69 Nae0ded63386940c98e7432d68ee701ba rdf:first sg:person.011675636134.08
70 rdf:rest Ncda78f3ee54245cda7b755ebba848d41
71 Nb1a1ad18babb40518e3db16a33c7da10 rdf:first N1a54bd87174a41ca99323c359ffa686d
72 rdf:rest N65b323001b9e4418a88bf945d0708fa8
73 Nb497354269df4d67a5035ffa7273d1d8 schema:issueNumber 3
74 rdf:type schema:PublicationIssue
75 Nbd6e33acecee4113957e4aec1f2f2945 schema:name readcube_id
76 schema:value 4b3b50e8ca0deacd24c209a25b67944fa967ad940c03fcea0a64088fd545409d
77 rdf:type schema:PropertyValue
78 Nc87d8b10a8b8439cad0d2f9e0052c88e schema:name nlm_unique_id
79 schema:value 101674571
80 rdf:type schema:PropertyValue
81 Ncda78f3ee54245cda7b755ebba848d41 rdf:first sg:person.01326157225.22
82 rdf:rest N7933a07130c7486eb60ed08528ed489c
83 Ndf70b651b05a4c1fb33c8686521f1915 schema:name pubmed_id
84 schema:value 30460528
85 rdf:type schema:PropertyValue
86 Nf6fac236596c440db474efbd6bdf6e76 rdf:first sg:person.0621121110.83
87 rdf:rest Naad1f679b7c541e08e3c063b26c727dd
88 Nfe51206b3f0f442587e6ca2f0d7de9b9 schema:name dimensions_id
89 schema:value pub.1110063137
90 rdf:type schema:PropertyValue
91 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
92 schema:name Medical and Health Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
95 schema:name Oncology and Carcinogenesis
96 rdf:type schema:DefinedTerm
97 sg:journal.1297457 schema:issn 2366-004X
98 2366-0058
99 schema:name Abdominal Radiology
100 rdf:type schema:Periodical
101 sg:person.011675636134.08 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
102 schema:familyName Ponzini
103 schema:givenName Danielle
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011675636134.08
105 rdf:type schema:Person
106 sg:person.013157626223.08 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
107 schema:familyName Sisk
108 schema:givenName Anthony E.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013157626223.08
110 rdf:type schema:Person
111 sg:person.01326157225.22 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
112 schema:familyName Ahuja
113 schema:givenName Preeti
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326157225.22
115 rdf:type schema:Person
116 sg:person.013325716116.40 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
117 schema:familyName Shakeri
118 schema:givenName Sepideh
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325716116.40
120 rdf:type schema:Person
121 sg:person.014133606277.08 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
122 schema:familyName Raman
123 schema:givenName Steven S.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133606277.08
125 rdf:type schema:Person
126 sg:person.0621121110.83 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
127 schema:familyName Afshari Mirak
128 schema:givenName Sohrab
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621121110.83
130 rdf:type schema:Person
131 sg:person.0715213033.18 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
132 schema:familyName Mohammadian Bajgiran
133 schema:givenName Amirhossein
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715213033.18
135 rdf:type schema:Person
136 sg:person.0761573265.81 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
137 schema:familyName Felker
138 schema:givenName Ely R.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761573265.81
140 rdf:type schema:Person
141 sg:pub.10.1007/s00330-011-2377-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041692485
142 https://doi.org/10.1007/s00330-011-2377-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00330-013-2795-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034542472
145 https://doi.org/10.1007/s00330-013-2795-0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00330-015-3894-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001615652
148 https://doi.org/10.1007/s00330-015-3894-x
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s13244-015-0411-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042492707
151 https://doi.org/10.1007/s13244-015-0411-3
152 rdf:type schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1083525890 schema:CreativeWork
154 https://doi.org/10.1016/j.urolonc.2011.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023980078
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.urolonc.2015.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052121607
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0140-6736(16)32401-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053755600
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s1470-2045(12)70388-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027767474
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1097/pas.0b013e318172ee97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033417669
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/bju.13234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051147550
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1148/radiol.11110987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053473991
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1148/radiol.13122233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044629168
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1148/radiol.2017152877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092354749
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1371/journal.pone.0139696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046845476
173 rdf:type schema:CreativeWork
174 https://doi.org/10.21873/anticanres.11045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069267088
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2214/ajr.14.13285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303919
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2214/ajr.17.17964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092110243
179 rdf:type schema:CreativeWork
180 https://doi.org/10.5489/cuaj.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072921578
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
183 schema:name Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
184 Department of Radiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, 90095, Los Angeles, CA, USA
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...