Hepatocellular carcinoma: preoperative gadoxetic acid–enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Su Joa Ahn, Jung Hoon Kim, Sang Joon Park, Seung Tack Kim, Joon Koo Han

ABSTRACT

PURPOSE: To investigate whether pre-operative gadoxetic acid-enhanced MRI can predict early recurrence after curative resection of single HCC using image features and texture analysis. MATERIALS AND METHODS: 179 patients with single HCC and who underwent pre-operative MRI were included. Two reviewers analyzed MR findings, including the tumor margin, peritumoral enhancement, peritumoral hypointensity on the hepatobiliary phase (HBP), diffusion restriction, capsule, tumoral fat, washout, portal-vein thrombus, signal intensity on HBP, and satellite nodule. Texture analysis on the HBP was also quantified. A multivariate analysis was used to identify predictive factors for early recurrence, microvascular invasion (MVI), and the tumor grade. RESULTS: For early recurrence, satellite nodule, peritumoral hypointensity, absence of capsule, and GLCM ASM were predictors (P < 0.05). For MVI, satellite nodule, peritumoral hypointensity, washout, and sphericity were predictors (P < 0.05). Satellite nodules, peritumoral hypointensity, diffusion restriction, and iso to high signal intensity on HBP were predictor for higher tumor grade (P < 0.05). Satellite nodules and peritumoral hypointensity were important showed common predictors for early recurrence, MVI, and grade (P < 0.05). The sensitivity and specificity for satellite nodule were 47.36% and 96.25%. When added texture variables to MRI findings, the diagnostic performance for predicting early recurrence is improved from 0.7 (SD 0.604-0.790) to 0.83 (SD 0.787-0.894). CONCLUSION: MR finding, including satellite nodule and peritumoral hypointensity on the HBP, as well as the texture parameters are useful to predict not only early recurrence, but also MVI and higher grade. More... »

PAGES

539-548

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-018-1768-9

DOI

http://dx.doi.org/10.1007/s00261-018-1768-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107083193

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30229421


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Su Joa", 
        "id": "sg:person.01065717421.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Chongno-gu, 110-744, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung Hoon", 
        "id": "sg:person.014534173224.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang Joon", 
        "id": "sg:person.0646222154.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seung Tack", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Chongno-gu, 110-744, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2502071879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000029037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surg.2006.06.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001555992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jct.2014.514134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002667214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00534-010-0369-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007984104", 
          "https://doi.org/10.1007/s00534-010-0369-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.25832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010343957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2319-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010883759", 
          "https://doi.org/10.1007/s00330-011-2319-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2319-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010883759", 
          "https://doi.org/10.1007/s00330-011-2319-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2002.3.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011594646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2002.3.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011594646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10092214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013429648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014894112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(195405)7:3<462::aid-cncr2820070308>3.0.co;2-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015843641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2007.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022980282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10091557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023582676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2501071702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024082401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/267807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025389943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000197706.21803.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028366981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000197706.21803.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028366981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000197706.21803.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028366981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(20000801)89:3<500::aid-cncr4>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029695757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030822993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1204904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031574239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.23502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032964758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033797988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1331-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035142609", 
          "https://doi.org/10.1007/s00330-009-1331-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1331-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035142609", 
          "https://doi.org/10.1007/s00330-009-1331-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1477-7819-10-107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035326205", 
          "https://doi.org/10.1186/1477-7819-10-107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2011.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036334226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038201938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2007.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038839896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.20039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040770214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2009.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044772838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3350/kjhep.2008.14.3.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044992368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-008-9846-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047940881", 
          "https://doi.org/10.1245/s10434-008-9846-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surge.2011.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050539298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-007-9671-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051433078", 
          "https://doi.org/10.1245/s10434-007-9671-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000478-200201000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052474856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000478-200201000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052474856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/94924398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064570487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12072-017-9799-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086045643", 
          "https://doi.org/10.1007/s12072-017-9799-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12072-017-9799-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086045643", 
          "https://doi.org/10.1007/s12072-017-9799-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "PURPOSE: To investigate whether pre-operative gadoxetic acid-enhanced MRI can predict early recurrence after curative resection of single HCC using image features and texture analysis.\nMATERIALS AND METHODS: 179 patients with single HCC and who underwent pre-operative MRI were included. Two reviewers analyzed MR findings, including the tumor margin, peritumoral enhancement, peritumoral hypointensity on the hepatobiliary phase (HBP), diffusion restriction, capsule, tumoral fat, washout, portal-vein thrombus, signal intensity on HBP, and satellite nodule. Texture analysis on the HBP was also quantified. A multivariate analysis was used to identify predictive factors for early recurrence, microvascular invasion (MVI), and the tumor grade.\nRESULTS: For early recurrence, satellite nodule, peritumoral hypointensity, absence of capsule, and GLCM ASM were predictors (P\u2009<\u20090.05). For MVI, satellite nodule, peritumoral hypointensity, washout, and sphericity were predictors (P\u2009<\u20090.05). Satellite nodules, peritumoral hypointensity, diffusion restriction, and iso to high signal intensity on HBP were predictor for higher tumor grade (P\u2009<\u20090.05). Satellite nodules and peritumoral hypointensity were important showed common predictors for early recurrence, MVI, and grade (P\u2009<\u20090.05). The sensitivity and specificity for satellite nodule were 47.36% and 96.25%. When added texture variables to MRI findings, the diagnostic performance for predicting early recurrence is improved from 0.7 (SD 0.604-0.790) to 0.83 (SD 0.787-0.894).\nCONCLUSION: MR finding, including satellite nodule and peritumoral hypointensity on the HBP, as well as the texture parameters are useful to predict not only early recurrence, but also MVI and higher grade.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-018-1768-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Hepatocellular carcinoma: preoperative gadoxetic acid\u2013enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis", 
    "pagination": "539-548", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4e1dce0a4da90c0f5698a4240091792211d5f7b4d6a34fa490dd26ead67a9c7e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30229421"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-018-1768-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107083193"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-018-1768-9", 
      "https://app.dimensions.ai/details/publication/pub.1107083193"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60375_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-018-1768-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1768-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1768-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1768-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1768-9'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-018-1768-9 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N87f866b7d8ac4b9faad4a9aa49945da0
4 schema:citation sg:pub.10.1007/s00330-009-1331-8
5 sg:pub.10.1007/s00330-011-2319-8
6 sg:pub.10.1007/s00534-010-0369-y
7 sg:pub.10.1007/s12072-017-9799-9
8 sg:pub.10.1186/1477-7819-10-107
9 sg:pub.10.1245/s10434-007-9671-6
10 sg:pub.10.1245/s10434-008-9846-9
11 https://doi.org/10.1002/1097-0142(195405)7:3<462::aid-cncr2820070308>3.0.co;2-e
12 https://doi.org/10.1002/1097-0142(20000801)89:3<500::aid-cncr4>3.0.co;2-o
13 https://doi.org/10.1002/hep.25832
14 https://doi.org/10.1002/jmri.22876
15 https://doi.org/10.1002/jmri.25454
16 https://doi.org/10.1002/lt.20039
17 https://doi.org/10.1002/lt.23502
18 https://doi.org/10.1016/j.acra.2005.07.014
19 https://doi.org/10.1016/j.acra.2007.05.023
20 https://doi.org/10.1016/j.crad.2011.08.012
21 https://doi.org/10.1016/j.ejrad.2007.12.005
22 https://doi.org/10.1016/j.surg.2006.06.028
23 https://doi.org/10.1016/j.surge.2011.07.004
24 https://doi.org/10.1053/j.gastro.2009.06.003
25 https://doi.org/10.1097/00000478-200201000-00003
26 https://doi.org/10.1097/01.sla.0000197706.21803.a1
27 https://doi.org/10.1101/gad.1204904
28 https://doi.org/10.1148/radiol.10091557
29 https://doi.org/10.1148/radiol.10092214
30 https://doi.org/10.1148/radiol.2501071702
31 https://doi.org/10.1148/radiol.2502071879
32 https://doi.org/10.1155/2015/267807
33 https://doi.org/10.1259/bjr/94924398
34 https://doi.org/10.3322/caac.21387
35 https://doi.org/10.3348/kjr.2002.3.1.1
36 https://doi.org/10.3350/kjhep.2008.14.3.371
37 https://doi.org/10.4236/jct.2014.514134
38 schema:datePublished 2019-02
39 schema:datePublishedReg 2019-02-01
40 schema:description PURPOSE: To investigate whether pre-operative gadoxetic acid-enhanced MRI can predict early recurrence after curative resection of single HCC using image features and texture analysis. MATERIALS AND METHODS: 179 patients with single HCC and who underwent pre-operative MRI were included. Two reviewers analyzed MR findings, including the tumor margin, peritumoral enhancement, peritumoral hypointensity on the hepatobiliary phase (HBP), diffusion restriction, capsule, tumoral fat, washout, portal-vein thrombus, signal intensity on HBP, and satellite nodule. Texture analysis on the HBP was also quantified. A multivariate analysis was used to identify predictive factors for early recurrence, microvascular invasion (MVI), and the tumor grade. RESULTS: For early recurrence, satellite nodule, peritumoral hypointensity, absence of capsule, and GLCM ASM were predictors (P < 0.05). For MVI, satellite nodule, peritumoral hypointensity, washout, and sphericity were predictors (P < 0.05). Satellite nodules, peritumoral hypointensity, diffusion restriction, and iso to high signal intensity on HBP were predictor for higher tumor grade (P < 0.05). Satellite nodules and peritumoral hypointensity were important showed common predictors for early recurrence, MVI, and grade (P < 0.05). The sensitivity and specificity for satellite nodule were 47.36% and 96.25%. When added texture variables to MRI findings, the diagnostic performance for predicting early recurrence is improved from 0.7 (SD 0.604-0.790) to 0.83 (SD 0.787-0.894). CONCLUSION: MR finding, including satellite nodule and peritumoral hypointensity on the HBP, as well as the texture parameters are useful to predict not only early recurrence, but also MVI and higher grade.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N15216c54cfc0403ba5338a97192455af
45 N23f36e698c524f0fb8436da012cf17a3
46 sg:journal.1297457
47 schema:name Hepatocellular carcinoma: preoperative gadoxetic acid–enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis
48 schema:pagination 539-548
49 schema:productId N0f8e3af507064e2d9ecc4726e6611155
50 N129c835d92824ea782ee44c393aefe0e
51 N5fe455a88d2047fba26e7352a1ba9869
52 N8b8f37f65dad420db5f8294c9f85dd2f
53 Nade0795029ff418faaf933749396d3d7
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107083193
55 https://doi.org/10.1007/s00261-018-1768-9
56 schema:sdDatePublished 2019-04-11T11:06
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N22f80d27583b4c6c98c669dcb4f25749
59 schema:url https://link.springer.com/10.1007%2Fs00261-018-1768-9
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0a7e8699903447058421d6774c401125 rdf:first sg:person.0646222154.82
64 rdf:rest N7334bb226b1547c1a6b182d90a77fd62
65 N0f8e3af507064e2d9ecc4726e6611155 schema:name dimensions_id
66 schema:value pub.1107083193
67 rdf:type schema:PropertyValue
68 N129c835d92824ea782ee44c393aefe0e schema:name doi
69 schema:value 10.1007/s00261-018-1768-9
70 rdf:type schema:PropertyValue
71 N15216c54cfc0403ba5338a97192455af schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 N22f80d27583b4c6c98c669dcb4f25749 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N23f36e698c524f0fb8436da012cf17a3 schema:volumeNumber 44
76 rdf:type schema:PublicationVolume
77 N5fe455a88d2047fba26e7352a1ba9869 schema:name nlm_unique_id
78 schema:value 101674571
79 rdf:type schema:PropertyValue
80 N7334bb226b1547c1a6b182d90a77fd62 rdf:first Nf3ed495948a64b6799944ebb73f9e6e7
81 rdf:rest Nc1c9f805ed1d4912995f366fb5d9e7c6
82 N87f866b7d8ac4b9faad4a9aa49945da0 rdf:first sg:person.01065717421.22
83 rdf:rest Nde04c428cba2456a9c8e2a077d0650e2
84 N8b8f37f65dad420db5f8294c9f85dd2f schema:name pubmed_id
85 schema:value 30229421
86 rdf:type schema:PropertyValue
87 Nade0795029ff418faaf933749396d3d7 schema:name readcube_id
88 schema:value 4e1dce0a4da90c0f5698a4240091792211d5f7b4d6a34fa490dd26ead67a9c7e
89 rdf:type schema:PropertyValue
90 Nc1c9f805ed1d4912995f366fb5d9e7c6 rdf:first sg:person.0647723014.95
91 rdf:rest rdf:nil
92 Nde04c428cba2456a9c8e2a077d0650e2 rdf:first sg:person.014534173224.00
93 rdf:rest N0a7e8699903447058421d6774c401125
94 Nf3ed495948a64b6799944ebb73f9e6e7 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
95 schema:familyName Kim
96 schema:givenName Seung Tack
97 rdf:type schema:Person
98 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
99 schema:name Medical and Health Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
102 schema:name Clinical Sciences
103 rdf:type schema:DefinedTerm
104 sg:journal.1297457 schema:issn 2366-004X
105 2366-0058
106 schema:name Abdominal Radiology
107 rdf:type schema:Periodical
108 sg:person.01065717421.22 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
109 schema:familyName Ahn
110 schema:givenName Su Joa
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22
112 rdf:type schema:Person
113 sg:person.014534173224.00 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
114 schema:familyName Kim
115 schema:givenName Jung Hoon
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00
117 rdf:type schema:Person
118 sg:person.0646222154.82 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
119 schema:familyName Park
120 schema:givenName Sang Joon
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82
122 rdf:type schema:Person
123 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
124 schema:familyName Han
125 schema:givenName Joon Koo
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
127 rdf:type schema:Person
128 sg:pub.10.1007/s00330-009-1331-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035142609
129 https://doi.org/10.1007/s00330-009-1331-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00330-011-2319-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010883759
132 https://doi.org/10.1007/s00330-011-2319-8
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00534-010-0369-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007984104
135 https://doi.org/10.1007/s00534-010-0369-y
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s12072-017-9799-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086045643
138 https://doi.org/10.1007/s12072-017-9799-9
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1477-7819-10-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035326205
141 https://doi.org/10.1186/1477-7819-10-107
142 rdf:type schema:CreativeWork
143 sg:pub.10.1245/s10434-007-9671-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051433078
144 https://doi.org/10.1245/s10434-007-9671-6
145 rdf:type schema:CreativeWork
146 sg:pub.10.1245/s10434-008-9846-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047940881
147 https://doi.org/10.1245/s10434-008-9846-9
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/1097-0142(195405)7:3<462::aid-cncr2820070308>3.0.co;2-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1015843641
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/1097-0142(20000801)89:3<500::aid-cncr4>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1029695757
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/hep.25832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010343957
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/jmri.22876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033797988
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/jmri.25454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030822993
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/lt.20039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040770214
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/lt.23502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032964758
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.acra.2005.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038201938
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.acra.2007.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022980282
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.crad.2011.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036334226
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ejrad.2007.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038839896
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.surg.2006.06.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001555992
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.surge.2011.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050539298
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1053/j.gastro.2009.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044772838
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1097/00000478-200201000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052474856
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1097/01.sla.0000197706.21803.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028366981
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1101/gad.1204904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031574239
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1148/radiol.10091557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023582676
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1148/radiol.10092214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013429648
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1148/radiol.2501071702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024082401
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1148/radiol.2502071879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000029037
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1155/2015/267807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025389943
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1259/bjr/94924398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064570487
194 rdf:type schema:CreativeWork
195 https://doi.org/10.3322/caac.21387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014894112
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3348/kjr.2002.3.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011594646
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3350/kjhep.2008.14.3.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044992368
200 rdf:type schema:CreativeWork
201 https://doi.org/10.4236/jct.2014.514134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002667214
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
204 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehangno, Chongno-gu, 110-744, Seoul, Korea
205 Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
208 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehangno, Chongno-gu, 110-744, Seoul, Korea
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...