Combined application of virtual monoenergetic high keV images and the orthopedic metal artifact reduction algorithm (O-MAR): effect on image quality View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Junghoan Park, Se Hyung Kim, Joon Koo Han

ABSTRACT

PURPOSE: To determine whether there is any additional metal artifact reduction when virtual monochromatic images (VMI) and metal artifact reduction for orthopedic implants (O-MAR) are applied together compared to their separate application in both phantom and clinical abdominopelvic CT studies. METHODS: An agar phantom containing a spinal prosthesis was scanned using a dual-layer, energy CT scanner (IQon, Philips Healthcare), and reconstructed with the filtered back-projection algorithm without O-MAR (FBP), filtered back-projection algorithm with O-MAR (O-MAR), VMI140 without O-MAR (VMI140), and VMI140 with O-MAR (VMI140 + O-MAR). Abdominopelvic CT images of 47 patients with metallic prostheses were also reconstructed in the same manner for clinical study. Noise measured as the standard deviation of CT Hounsfield units was compared between the four reconstruction methods in both phantom and clinical studies. Improvements in metal artifact reduction, image quality, and diagnostic improvement were further analyzed in the clinical study. RESULTS: Noise was significantly decreased when both VMI and O-MAR were applied in conjunction compared to their separate application in both phantom (16.3 HU vs. 25.0 and 26.4 HU) and clinical studies (15.8 HU vs. 19.2 and 26.2 HU). In the clinical study, the qualitative degree of artifacts was also significantly reduced with VMI140 + O-MAR (2.85 and 2.87) compared to VMI140 (2.36 and 2.26) or O-MAR (2.13 and 2.04) alone for both reviewers (P < 0.001) and improvements in image quality were observed in all 47 patients, with actual diagnostic improvements observed in three. CONCLUSIONS: Metal artifacts can be additionally reduced by applying O-MAR and VMI in conjunction, compared to their separate application, thereby improving diagnostic performance. More... »

PAGES

756-765

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-018-1748-0

DOI

http://dx.doi.org/10.1007/s00261-018-1748-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106288645

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30135970


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Junghoan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Se Hyung", 
        "id": "sg:person.016434366660.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.acra.2011.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002350103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2014.15.6.746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010333486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13121409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011608990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11100978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012044446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2013.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020287161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031446231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031446231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2013.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031726736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038530383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4791645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038789622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3577758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040089568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2013.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044223583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2062-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045347713", 
          "https://doi.org/10.1007/s00330-011-2062-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12194-012-0179-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048166685", 
          "https://doi.org/10.1007/s12194-012-0179-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.246045065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048428298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2885-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048773651", 
          "https://doi.org/10.1007/s00330-013-2885-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1431927699000057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054931204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/3/1047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059031136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.538943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20150993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.3462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.10980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.14.12745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.332125124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078701022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2017.18.3.526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084739899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.16.17684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091154380"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "PURPOSE: To determine whether there is any additional metal artifact reduction when virtual monochromatic images (VMI) and metal artifact reduction for orthopedic implants (O-MAR) are applied together compared to their separate application in both phantom and clinical abdominopelvic CT studies.\nMETHODS: An agar phantom containing a spinal prosthesis was scanned using a dual-layer, energy CT scanner (IQon, Philips Healthcare), and reconstructed with the filtered back-projection algorithm without O-MAR (FBP), filtered back-projection algorithm with O-MAR (O-MAR), VMI140 without O-MAR (VMI140), and VMI140 with O-MAR (VMI140\u2009+\u2009O-MAR). Abdominopelvic CT images of 47 patients with metallic prostheses were also reconstructed in the same manner for clinical study. Noise measured as the standard deviation of CT Hounsfield units was compared between the four reconstruction methods in both phantom and clinical studies. Improvements in metal artifact reduction, image quality, and diagnostic improvement were further analyzed in the clinical study.\nRESULTS: Noise was significantly decreased when both VMI and O-MAR were applied in conjunction compared to their separate application in both phantom (16.3 HU vs. 25.0 and 26.4 HU) and clinical studies (15.8 HU vs. 19.2 and 26.2 HU). In the clinical study, the qualitative degree of artifacts was also significantly reduced with VMI140\u2009+\u2009O-MAR (2.85 and 2.87) compared to VMI140 (2.36 and 2.26) or O-MAR (2.13 and 2.04) alone for both reviewers (P\u2009<\u20090.001) and improvements in image quality were observed in all 47 patients, with actual diagnostic improvements observed in three.\nCONCLUSIONS: Metal artifacts can be additionally reduced by applying O-MAR and VMI in conjunction, compared to their separate application, thereby improving diagnostic performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-018-1748-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Combined application of virtual monoenergetic high keV images and the orthopedic metal artifact reduction algorithm (O-MAR): effect on image quality", 
    "pagination": "756-765", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "94332c4da06160d3a386d100219b96d95982fe55a5a5d213ac04ce932bc0bd44"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30135970"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-018-1748-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106288645"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-018-1748-0", 
      "https://app.dimensions.ai/details/publication/pub.1106288645"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60338_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-018-1748-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1748-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1748-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1748-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1748-0'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-018-1748-0 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N820089744b23492f896323c0def856a7
4 schema:citation sg:pub.10.1007/s00330-011-2062-1
5 sg:pub.10.1007/s00330-013-2885-z
6 sg:pub.10.1007/s12194-012-0179-9
7 https://doi.org/10.1016/j.acra.2011.05.009
8 https://doi.org/10.1016/j.crad.2013.08.008
9 https://doi.org/10.1016/j.crad.2013.12.011
10 https://doi.org/10.1016/j.ejrad.2013.02.024
11 https://doi.org/10.1017/s1431927699000057
12 https://doi.org/10.1088/0031-9155/60/3/1047
13 https://doi.org/10.1097/rli.0000000000000191
14 https://doi.org/10.1097/rli.0b013e31824c86a3
15 https://doi.org/10.1109/42.538943
16 https://doi.org/10.1118/1.3577758
17 https://doi.org/10.1118/1.4791645
18 https://doi.org/10.1118/1.598853
19 https://doi.org/10.1148/radiol.11100978
20 https://doi.org/10.1148/radiol.13121409
21 https://doi.org/10.1148/rg.246045065
22 https://doi.org/10.1148/rg.332125124
23 https://doi.org/10.1259/bjr.20140473
24 https://doi.org/10.1259/bjr.20150993
25 https://doi.org/10.2214/ajr.09.3462
26 https://doi.org/10.2214/ajr.12.9121
27 https://doi.org/10.2214/ajr.12.9226
28 https://doi.org/10.2214/ajr.13.10980
29 https://doi.org/10.2214/ajr.14.12745
30 https://doi.org/10.2214/ajr.16.17684
31 https://doi.org/10.3348/kjr.2014.15.6.746
32 https://doi.org/10.3348/kjr.2017.18.3.526
33 schema:datePublished 2019-02
34 schema:datePublishedReg 2019-02-01
35 schema:description PURPOSE: To determine whether there is any additional metal artifact reduction when virtual monochromatic images (VMI) and metal artifact reduction for orthopedic implants (O-MAR) are applied together compared to their separate application in both phantom and clinical abdominopelvic CT studies. METHODS: An agar phantom containing a spinal prosthesis was scanned using a dual-layer, energy CT scanner (IQon, Philips Healthcare), and reconstructed with the filtered back-projection algorithm without O-MAR (FBP), filtered back-projection algorithm with O-MAR (O-MAR), VMI140 without O-MAR (VMI140), and VMI140 with O-MAR (VMI140 + O-MAR). Abdominopelvic CT images of 47 patients with metallic prostheses were also reconstructed in the same manner for clinical study. Noise measured as the standard deviation of CT Hounsfield units was compared between the four reconstruction methods in both phantom and clinical studies. Improvements in metal artifact reduction, image quality, and diagnostic improvement were further analyzed in the clinical study. RESULTS: Noise was significantly decreased when both VMI and O-MAR were applied in conjunction compared to their separate application in both phantom (16.3 HU vs. 25.0 and 26.4 HU) and clinical studies (15.8 HU vs. 19.2 and 26.2 HU). In the clinical study, the qualitative degree of artifacts was also significantly reduced with VMI140 + O-MAR (2.85 and 2.87) compared to VMI140 (2.36 and 2.26) or O-MAR (2.13 and 2.04) alone for both reviewers (P < 0.001) and improvements in image quality were observed in all 47 patients, with actual diagnostic improvements observed in three. CONCLUSIONS: Metal artifacts can be additionally reduced by applying O-MAR and VMI in conjunction, compared to their separate application, thereby improving diagnostic performance.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N812174337dc146128414ee32c6ad1cde
40 N82b1c1a3638540a3b573164ca2f2dcef
41 sg:journal.1297457
42 schema:name Combined application of virtual monoenergetic high keV images and the orthopedic metal artifact reduction algorithm (O-MAR): effect on image quality
43 schema:pagination 756-765
44 schema:productId N75cd74125fcf477e922a7cb8663d6c92
45 N98feee76a8344e90952d06c7b4d6ad20
46 Nbac5e8a093704d759f785d51d30c549d
47 Nc57916bf7dae45f4b237c5d869e0e613
48 Nd6cf4fea87104d60995fd0c17ae33ed3
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106288645
50 https://doi.org/10.1007/s00261-018-1748-0
51 schema:sdDatePublished 2019-04-11T11:00
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N208701a58518420bbd3afbde2d7fba93
54 schema:url https://link.springer.com/10.1007%2Fs00261-018-1748-0
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N208701a58518420bbd3afbde2d7fba93 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N4fa34ac31aff4b3ab4ec1bb6ea41dc61 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
61 schema:familyName Park
62 schema:givenName Junghoan
63 rdf:type schema:Person
64 N5763dd16edf846099a131d73e961239f rdf:first sg:person.0647723014.95
65 rdf:rest rdf:nil
66 N75cd74125fcf477e922a7cb8663d6c92 schema:name dimensions_id
67 schema:value pub.1106288645
68 rdf:type schema:PropertyValue
69 N812174337dc146128414ee32c6ad1cde schema:volumeNumber 44
70 rdf:type schema:PublicationVolume
71 N820089744b23492f896323c0def856a7 rdf:first N4fa34ac31aff4b3ab4ec1bb6ea41dc61
72 rdf:rest N8a8322dbc231417f9e12c36550fa784e
73 N82b1c1a3638540a3b573164ca2f2dcef schema:issueNumber 2
74 rdf:type schema:PublicationIssue
75 N8a8322dbc231417f9e12c36550fa784e rdf:first sg:person.016434366660.80
76 rdf:rest N5763dd16edf846099a131d73e961239f
77 N98feee76a8344e90952d06c7b4d6ad20 schema:name nlm_unique_id
78 schema:value 101674571
79 rdf:type schema:PropertyValue
80 Nbac5e8a093704d759f785d51d30c549d schema:name readcube_id
81 schema:value 94332c4da06160d3a386d100219b96d95982fe55a5a5d213ac04ce932bc0bd44
82 rdf:type schema:PropertyValue
83 Nc57916bf7dae45f4b237c5d869e0e613 schema:name pubmed_id
84 schema:value 30135970
85 rdf:type schema:PropertyValue
86 Nd6cf4fea87104d60995fd0c17ae33ed3 schema:name doi
87 schema:value 10.1007/s00261-018-1748-0
88 rdf:type schema:PropertyValue
89 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
90 schema:name Medical and Health Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Clinical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1297457 schema:issn 2366-004X
96 2366-0058
97 schema:name Abdominal Radiology
98 rdf:type schema:Periodical
99 sg:person.016434366660.80 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
100 schema:familyName Kim
101 schema:givenName Se Hyung
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80
103 rdf:type schema:Person
104 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
105 schema:familyName Han
106 schema:givenName Joon Koo
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
108 rdf:type schema:Person
109 sg:pub.10.1007/s00330-011-2062-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045347713
110 https://doi.org/10.1007/s00330-011-2062-1
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00330-013-2885-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048773651
113 https://doi.org/10.1007/s00330-013-2885-z
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s12194-012-0179-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048166685
116 https://doi.org/10.1007/s12194-012-0179-9
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.acra.2011.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002350103
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.crad.2013.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044223583
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.crad.2013.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031726736
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ejrad.2013.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020287161
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1017/s1431927699000057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054931204
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/0031-9155/60/3/1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031136
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1097/rli.0000000000000191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031446231
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1097/rli.0b013e31824c86a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013900495
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/42.538943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170463
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1118/1.3577758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040089568
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1118/1.4791645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038789622
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1118/1.598853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038530383
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1148/radiol.11100978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012044446
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1148/radiol.13121409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011608990
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1148/rg.246045065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048428298
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1148/rg.332125124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078701022
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1259/bjr.20140473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565412
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1259/bjr.20150993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565942
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2214/ajr.09.3462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300497
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2214/ajr.12.9121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302751
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2214/ajr.12.9226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302789
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2214/ajr.13.10980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303177
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2214/ajr.14.12745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303731
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2214/ajr.16.17684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091154380
165 rdf:type schema:CreativeWork
166 https://doi.org/10.3348/kjr.2014.15.6.746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010333486
167 rdf:type schema:CreativeWork
168 https://doi.org/10.3348/kjr.2017.18.3.526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084739899
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
171 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
172 Seoul National University College of Medicine, Seoul, Republic of Korea
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
175 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
176 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
177 Seoul National University College of Medicine, Seoul, Republic of Korea
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...