Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Vinit Baliyan, Hamed Kordbacheh, Bimal Parameswaran, Balaji Ganeshan, Dushyant Sahani, Avinash Kambadakone

ABSTRACT

PURPOSE: To study the impact of keV levels of virtual monoenergetic images generated from rapid kVp-switching dual-energy CT (rsDECT) on CT texture analysis (CTTA). METHODS: This study included 30 consecutive patients (59.3 ± 12 years; range 34-77 years; 17M:13F) who underwent portal venous phase abdominal CT on a rsDECT scanner. Axial 5-mm monoenergetic images at 5 energy levels (40/50/60/70/80 keV) were created and CTTA of liver was performed. CTTA comprised a filtration-histogram technique with different spatial scale filter (SSF) values (0-6). CTTA quantification at each SSF value included histogram-based statistical parameters such as mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis. The values were compared using repeated measures ANOVA. RESULTS: Among the different CTTA metrics, mean intensity (at SSF > 0), skewness, and kurtosis did not show variability whereas entropy, MPP, and SD varied with different keV levels. There was no change in skewness and kurtosis values for all 6 filters (p > 0.05). Mean intensity showed no change for filters 2-6 (p > 0.05). Mean intensity at SSF = 0 i.e., mean attenuations were 91.2 ± 2.9, 108.7 ± 3.6, 136.1 ± 4.7, 179.8 ± 6.9, and 250.5 ± 10.1 HU for 80, 70, 60, 50, and 40 keV images, respectively demonstrating significant variability (decrease) with increasing keV levels (p < 0.001). Entropy, MPP, and SD values showed a statistically significant decrease with increasing keV of monoenergetic images on all 6 filters (p < 0.001). CONCLUSION: The energy levels of monoenergetic images have variable impact on the different CTTA parameters, with no significant change in skewness, kurtosis, and filtered mean intensity whereas significant decrease in mean attenuation, entropy, MPP, and SD values with increasing energy levels. More... »

PAGES

2693-2701

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00261-018-1527-y

DOI

http://dx.doi.org/10.1007/s00261-018-1527-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101535591

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29541830


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baliyan", 
        "givenName": "Vinit", 
        "id": "sg:person.0634231055.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634231055.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kordbacheh", 
        "givenName": "Hamed", 
        "id": "sg:person.013456712775.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013456712775.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eastern Health", 
          "id": "https://www.grid.ac/institutes/grid.414366.2", 
          "name": [
            "Imaging Associates, Eastern Health, Box Hill, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parameswaran", 
        "givenName": "Bimal", 
        "id": "sg:person.01012304736.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012304736.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Institute of Nuclear Medicine, University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganeshan", 
        "givenName": "Balaji", 
        "id": "sg:person.0717655137.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717655137.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahani", 
        "givenName": "Dushyant", 
        "id": "sg:person.0771231354.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771231354.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kambadakone", 
        "givenName": "Avinash", 
        "id": "sg:person.012726542767.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726542767.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2502071879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000029037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001262488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001262488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10092292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004393082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.343135041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007245007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3140589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007720499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2253011376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010297170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2319-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010883759", 
          "https://doi.org/10.1007/s00330-011-2319-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2319-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010883759", 
          "https://doi.org/10.1007/s00330-011-2319-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011529137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-014-0318-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015629775", 
          "https://doi.org/10.1007/s00261-014-0318-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017587470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017587470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020669084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022961172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2007.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022980282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023343443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1387272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024825681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-016-0966-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027821529", 
          "https://doi.org/10.1007/s00261-016-0966-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-016-0966-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027821529", 
          "https://doi.org/10.1007/s00261-016-0966-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2965-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030276284", 
          "https://doi.org/10.1007/s00330-013-2965-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2965-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030276284", 
          "https://doi.org/10.1007/s00330-013-2965-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1113205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031166230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/mder.s70630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031962531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2011.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036334226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-012-0196-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036528660", 
          "https://doi.org/10.1007/s13244-012-0196-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038201938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199404000-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038686194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199404000-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038686194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2007.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038839896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2013.0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039340051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2050640615601603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040470565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2050640615601603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040470565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042743379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200207000-00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043810622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200207000-00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043810622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2938517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045316070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2010.0021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045447398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047275413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047275413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12112428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047949588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.3132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050315738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2013.9045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050857219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-12-1307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051131648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-015-1563-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051197972", 
          "https://doi.org/10.1186/s12885-015-1563-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-015-1563-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051197972", 
          "https://doi.org/10.1186/s12885-015-1563-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015150919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052583718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2008-1032713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057528818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/61/2/906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059031610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2003.813793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061656260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.14.14147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40644-017-0106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074193810", 
          "https://doi.org/10.1186/s40644-017-0106-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40644-017-0106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074193810", 
          "https://doi.org/10.1186/s40644-017-0106-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077801102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078302295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40134-017-0213-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084038338", 
          "https://doi.org/10.1007/s40134-017-0213-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40134-017-0213-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084038338", 
          "https://doi.org/10.1007/s40134-017-0213-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.16.17742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084394714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/174_2017_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084703684", 
          "https://doi.org/10.1007/174_2017_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40134-017-0226-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085609068", 
          "https://doi.org/10.1007/s40134-017-0226-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40134-017-0226-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085609068", 
          "https://doi.org/10.1007/s40134-017-0226-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "PURPOSE: To study the impact of keV levels of virtual monoenergetic images generated from rapid kVp-switching dual-energy CT (rsDECT) on CT texture analysis (CTTA).\nMETHODS: This study included 30 consecutive patients (59.3\u00a0\u00b1\u00a012\u00a0years; range 34-77\u00a0years; 17M:13F) who underwent portal venous phase abdominal CT on a rsDECT scanner. Axial 5-mm monoenergetic images at 5 energy levels (40/50/60/70/80\u00a0keV) were created and CTTA of liver was performed. CTTA comprised a filtration-histogram technique with different spatial scale filter (SSF) values (0-6). CTTA quantification at each SSF value included histogram-based statistical parameters such as mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis. The values were compared using repeated measures ANOVA.\nRESULTS: Among the different CTTA metrics, mean intensity (at SSF\u00a0>\u00a00), skewness, and kurtosis did not show variability whereas entropy, MPP, and SD varied with different keV levels. There was no change in skewness and kurtosis values for all 6 filters (p\u00a0>\u00a00.05). Mean intensity showed no change for filters 2-6 (p\u00a0>\u00a00.05). Mean intensity at SSF\u00a0=\u00a00 i.e., mean attenuations were 91.2\u00a0\u00b1\u00a02.9, 108.7\u00a0\u00b1\u00a03.6, 136.1\u00a0\u00b1\u00a04.7, 179.8\u00a0\u00b1\u00a06.9, and 250.5\u00a0\u00b1\u00a010.1 HU for 80, 70, 60, 50, and 40\u00a0keV images, respectively demonstrating significant variability (decrease) with increasing keV levels (p\u00a0<\u00a00.001). Entropy, MPP, and SD values showed a statistically significant decrease with increasing keV of monoenergetic images on all 6 filters (p\u00a0<\u00a00.001).\nCONCLUSION: The energy levels of monoenergetic images have variable impact on the different CTTA parameters, with no significant change in skewness, kurtosis, and filtered mean intensity whereas significant decrease in mean attenuation, entropy, MPP, and SD values with increasing energy levels.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00261-018-1527-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297457", 
        "issn": [
          "2366-004X", 
          "2366-0058"
        ], 
        "name": "Abdominal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis", 
    "pagination": "2693-2701", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "df2e0ef69ada84f5586f0887e1333dc2594912a5b6ff1600ad15f8fb1e7b77ad"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29541830"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101674571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00261-018-1527-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101535591"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00261-018-1527-y", 
      "https://app.dimensions.ai/details/publication/pub.1101535591"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127423_00000010.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00261-018-1527-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1527-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1527-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1527-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00261-018-1527-y'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00261-018-1527-y schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N16d36bbf3ffb4f6d9e6af23dfdaa0165
4 schema:citation sg:pub.10.1007/174_2017_28
5 sg:pub.10.1007/s00261-014-0318-3
6 sg:pub.10.1007/s00261-016-0966-6
7 sg:pub.10.1007/s00330-011-2319-8
8 sg:pub.10.1007/s00330-013-2965-0
9 sg:pub.10.1007/s13244-012-0196-6
10 sg:pub.10.1007/s40134-017-0213-0
11 sg:pub.10.1007/s40134-017-0226-8
12 sg:pub.10.1186/s12885-015-1563-8
13 sg:pub.10.1186/s40644-017-0106-8
14 https://app.dimensions.ai/details/publication/pub.1077801102
15 https://doi.org/10.1002/jmri.23971
16 https://doi.org/10.1002/jmri.25279
17 https://doi.org/10.1002/nbm.3132
18 https://doi.org/10.1016/j.acra.2005.07.014
19 https://doi.org/10.1016/j.acra.2007.05.023
20 https://doi.org/10.1016/j.crad.2011.08.012
21 https://doi.org/10.1016/j.ejrad.2007.12.005
22 https://doi.org/10.1016/j.ejrad.2016.08.014
23 https://doi.org/10.1055/s-2008-1032713
24 https://doi.org/10.1056/nejmoa1113205
25 https://doi.org/10.1088/0031-9155/61/2/906
26 https://doi.org/10.1097/00004424-199404000-00013
27 https://doi.org/10.1097/00004728-200207000-00017
28 https://doi.org/10.1097/rct.0000000000000239
29 https://doi.org/10.1097/rct.0000000000000546
30 https://doi.org/10.1097/rli.0000000000000116
31 https://doi.org/10.1102/1470-7330.2010.0021
32 https://doi.org/10.1102/1470-7330.2013.0015
33 https://doi.org/10.1102/1470-7330.2013.9045
34 https://doi.org/10.1109/titb.2003.813793
35 https://doi.org/10.1118/1.1387272
36 https://doi.org/10.1118/1.2938517
37 https://doi.org/10.1118/1.3140589
38 https://doi.org/10.1148/radiol.10092292
39 https://doi.org/10.1148/radiol.10100354
40 https://doi.org/10.1148/radiol.11110264
41 https://doi.org/10.1148/radiol.12112428
42 https://doi.org/10.1148/radiol.12120254
43 https://doi.org/10.1148/radiol.2015150919
44 https://doi.org/10.1148/radiol.2253011376
45 https://doi.org/10.1148/radiol.2502071879
46 https://doi.org/10.1148/rg.343135041
47 https://doi.org/10.1158/1078-0432.ccr-12-1307
48 https://doi.org/10.1177/2050640615601603
49 https://doi.org/10.2147/mder.s70630
50 https://doi.org/10.2214/ajr.12.9121
51 https://doi.org/10.2214/ajr.14.14147
52 https://doi.org/10.2214/ajr.16.17742
53 schema:datePublished 2018-10
54 schema:datePublishedReg 2018-10-01
55 schema:description PURPOSE: To study the impact of keV levels of virtual monoenergetic images generated from rapid kVp-switching dual-energy CT (rsDECT) on CT texture analysis (CTTA). METHODS: This study included 30 consecutive patients (59.3 ± 12 years; range 34-77 years; 17M:13F) who underwent portal venous phase abdominal CT on a rsDECT scanner. Axial 5-mm monoenergetic images at 5 energy levels (40/50/60/70/80 keV) were created and CTTA of liver was performed. CTTA comprised a filtration-histogram technique with different spatial scale filter (SSF) values (0-6). CTTA quantification at each SSF value included histogram-based statistical parameters such as mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis. The values were compared using repeated measures ANOVA. RESULTS: Among the different CTTA metrics, mean intensity (at SSF > 0), skewness, and kurtosis did not show variability whereas entropy, MPP, and SD varied with different keV levels. There was no change in skewness and kurtosis values for all 6 filters (p > 0.05). Mean intensity showed no change for filters 2-6 (p > 0.05). Mean intensity at SSF = 0 i.e., mean attenuations were 91.2 ± 2.9, 108.7 ± 3.6, 136.1 ± 4.7, 179.8 ± 6.9, and 250.5 ± 10.1 HU for 80, 70, 60, 50, and 40 keV images, respectively demonstrating significant variability (decrease) with increasing keV levels (p < 0.001). Entropy, MPP, and SD values showed a statistically significant decrease with increasing keV of monoenergetic images on all 6 filters (p < 0.001). CONCLUSION: The energy levels of monoenergetic images have variable impact on the different CTTA parameters, with no significant change in skewness, kurtosis, and filtered mean intensity whereas significant decrease in mean attenuation, entropy, MPP, and SD values with increasing energy levels.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N9f6edbefbd7c452fa6f60a803d5b1abb
60 Nac7eb7bce79944079b3366d9ff308629
61 sg:journal.1297457
62 schema:name Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis
63 schema:pagination 2693-2701
64 schema:productId N11b90548cbd14ac0806030861bb50661
65 N6764749854a541d2a1a24edcf44609ea
66 N9a2a714d4b5d435b8209ab92c1863cf0
67 N9a7964c4537c4cb8822034cc3f2824e9
68 N9ec8d77204eb4ecf94098414f858edf9
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101535591
70 https://doi.org/10.1007/s00261-018-1527-y
71 schema:sdDatePublished 2019-04-11T11:35
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N482f0480a55047f58a58a4935aa399d5
74 schema:url https://link.springer.com/10.1007%2Fs00261-018-1527-y
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N11b90548cbd14ac0806030861bb50661 schema:name pubmed_id
79 schema:value 29541830
80 rdf:type schema:PropertyValue
81 N16d36bbf3ffb4f6d9e6af23dfdaa0165 rdf:first sg:person.0634231055.14
82 rdf:rest Nbcb47b67d78b4e91baa545b687ca6106
83 N16edfba423054a3bacd589046299ada8 rdf:first sg:person.0771231354.50
84 rdf:rest N67f0912437c044769773f07bccd499a4
85 N482f0480a55047f58a58a4935aa399d5 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N6764749854a541d2a1a24edcf44609ea schema:name nlm_unique_id
88 schema:value 101674571
89 rdf:type schema:PropertyValue
90 N67f0912437c044769773f07bccd499a4 rdf:first sg:person.012726542767.47
91 rdf:rest rdf:nil
92 N8b9acbc3ad4b4f05b78827db4404ce41 rdf:first sg:person.01012304736.18
93 rdf:rest Nb8715a10f91a4b659ad8dc6f4508e526
94 N9a2a714d4b5d435b8209ab92c1863cf0 schema:name readcube_id
95 schema:value df2e0ef69ada84f5586f0887e1333dc2594912a5b6ff1600ad15f8fb1e7b77ad
96 rdf:type schema:PropertyValue
97 N9a7964c4537c4cb8822034cc3f2824e9 schema:name dimensions_id
98 schema:value pub.1101535591
99 rdf:type schema:PropertyValue
100 N9ec8d77204eb4ecf94098414f858edf9 schema:name doi
101 schema:value 10.1007/s00261-018-1527-y
102 rdf:type schema:PropertyValue
103 N9f6edbefbd7c452fa6f60a803d5b1abb schema:issueNumber 10
104 rdf:type schema:PublicationIssue
105 Nac7eb7bce79944079b3366d9ff308629 schema:volumeNumber 43
106 rdf:type schema:PublicationVolume
107 Nb8715a10f91a4b659ad8dc6f4508e526 rdf:first sg:person.0717655137.02
108 rdf:rest N16edfba423054a3bacd589046299ada8
109 Nbcb47b67d78b4e91baa545b687ca6106 rdf:first sg:person.013456712775.95
110 rdf:rest N8b9acbc3ad4b4f05b78827db4404ce41
111 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
112 schema:name Medical and Health Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
115 schema:name Clinical Sciences
116 rdf:type schema:DefinedTerm
117 sg:journal.1297457 schema:issn 2366-004X
118 2366-0058
119 schema:name Abdominal Radiology
120 rdf:type schema:Periodical
121 sg:person.01012304736.18 schema:affiliation https://www.grid.ac/institutes/grid.414366.2
122 schema:familyName Parameswaran
123 schema:givenName Bimal
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012304736.18
125 rdf:type schema:Person
126 sg:person.012726542767.47 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
127 schema:familyName Kambadakone
128 schema:givenName Avinash
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726542767.47
130 rdf:type schema:Person
131 sg:person.013456712775.95 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
132 schema:familyName Kordbacheh
133 schema:givenName Hamed
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013456712775.95
135 rdf:type schema:Person
136 sg:person.0634231055.14 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
137 schema:familyName Baliyan
138 schema:givenName Vinit
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634231055.14
140 rdf:type schema:Person
141 sg:person.0717655137.02 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
142 schema:familyName Ganeshan
143 schema:givenName Balaji
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717655137.02
145 rdf:type schema:Person
146 sg:person.0771231354.50 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
147 schema:familyName Sahani
148 schema:givenName Dushyant
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771231354.50
150 rdf:type schema:Person
151 sg:pub.10.1007/174_2017_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084703684
152 https://doi.org/10.1007/174_2017_28
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00261-014-0318-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015629775
155 https://doi.org/10.1007/s00261-014-0318-3
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00261-016-0966-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027821529
158 https://doi.org/10.1007/s00261-016-0966-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s00330-011-2319-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010883759
161 https://doi.org/10.1007/s00330-011-2319-8
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00330-013-2965-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030276284
164 https://doi.org/10.1007/s00330-013-2965-0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s13244-012-0196-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036528660
167 https://doi.org/10.1007/s13244-012-0196-6
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s40134-017-0213-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084038338
170 https://doi.org/10.1007/s40134-017-0213-0
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s40134-017-0226-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085609068
173 https://doi.org/10.1007/s40134-017-0226-8
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/s12885-015-1563-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051197972
176 https://doi.org/10.1186/s12885-015-1563-8
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/s40644-017-0106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074193810
179 https://doi.org/10.1186/s40644-017-0106-8
180 rdf:type schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1077801102 schema:CreativeWork
182 https://doi.org/10.1002/jmri.23971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023343443
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/jmri.25279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011529137
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/nbm.3132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050315738
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.acra.2005.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038201938
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.acra.2007.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022980282
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.crad.2011.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036334226
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.ejrad.2007.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038839896
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.ejrad.2016.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022961172
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1055/s-2008-1032713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057528818
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1056/nejmoa1113205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031166230
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/0031-9155/61/2/906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031610
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1097/00004424-199404000-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038686194
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1097/00004728-200207000-00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043810622
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1097/rct.0000000000000239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017587470
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1097/rct.0000000000000546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047275413
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1097/rli.0000000000000116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001262488
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1102/1470-7330.2010.0021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045447398
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1102/1470-7330.2013.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039340051
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1102/1470-7330.2013.9045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050857219
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/titb.2003.813793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656260
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1118/1.1387272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024825681
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1118/1.2938517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045316070
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1118/1.3140589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007720499
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1148/radiol.10092292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004393082
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1148/radiol.10100354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078302295
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1148/radiol.11110264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020669084
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1148/radiol.12112428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047949588
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1148/radiol.12120254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042743379
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1148/radiol.2015150919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052583718
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1148/radiol.2253011376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010297170
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1148/radiol.2502071879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000029037
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1148/rg.343135041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007245007
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1158/1078-0432.ccr-12-1307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051131648
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1177/2050640615601603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040470565
249 rdf:type schema:CreativeWork
250 https://doi.org/10.2147/mder.s70630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031962531
251 rdf:type schema:CreativeWork
252 https://doi.org/10.2214/ajr.12.9121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302751
253 rdf:type schema:CreativeWork
254 https://doi.org/10.2214/ajr.14.14147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069304160
255 rdf:type schema:CreativeWork
256 https://doi.org/10.2214/ajr.16.17742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084394714
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
259 schema:name Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, 02114, Boston, MA, USA
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.414366.2 schema:alternateName Eastern Health
262 schema:name Imaging Associates, Eastern Health, Box Hill, VIC, Australia
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
265 schema:name Institute of Nuclear Medicine, University College London, London, UK
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...